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Computational modeling and experimental/clinical prediction of the complex signals during cardiac arrhythmias have
the potential to lead to new approaches for prevention and treatment. Machine-learning (ML) and deep-learning ap-
proaches can be used for time-series forecasting and have recently been applied to cardiac electrophysiology. While
the high spatiotemporal nonlinearity of cardiac electrical dynamics has hindered application of these approaches, the
fact that cardiac voltage time series are not random suggests that reliable and efficient ML methods have the potential
to predict future action potentials.

This work introduces and evaluates an integrated architecture in which a long short-term memory autoencoder (AE)
is integrated into the echo state network (ESN) framework. In this approach, the AE learns a compressed representation
of the input nonlinear time series. Then, the trained encoder serves as a feature extraction component, feeding the
learned features into the recurrent ESN reservoir. The proposed AE-ESN approach is evaluated using synthetic and
experimental voltage time series from cardiac cells, which exhibit nonlinear and chaotic behavior. Compared to the
baseline and physics-informed ESN approaches, the AE-ESN yields mean absolute errors in predicted voltage 6-14
times smaller when forecasting approximately 20 future action potentials for the datasets considered. The AE-ESN
also demonstrates less sensitivity to algorithmic parameter settings. Furthermore, the representation provided by the
feature-extraction component removes the requirement in previous work for explicitly introducing external stimulus
currents, which may not be easily extracted from real-world datasets, as additional time series, thereby making the

AE-ESN easier to apply to clinical data.

Time series of cardiac electrical signals during arrhyth-
mias can exhibit highly nonlinear and chaotic dynami-
cal behavior, making forecasting of their dynamics chal-
lenging. However, estimates of future system states could
facilitate the development of improved arrhythmia con-
trol and termination methods by allowing opportunities
for early intervention. Data-driven methods have shown
promise in forecasting tasks like these, but finding appro-
priate values for the many network parameters and hy-
perparameters involved is a difficult and time-consuming
task. Here we aim to decrease sensitivity to parameter
values and to improve performance in a cardiac appli-
cation of an echo state network (ESN) by incorporating
an autoencoder (AE), which automatically extracts signal
features to learn a compressed representation of the time
series. We show that the integration of an AE with an
ESN can produce reliable and robust predictive models for
long-term forecasting of experimentally recorded complex
cardiac action potential time series.

I. INTRODUCTION

Cardiac cells exhibit a range of complex nonlinear behav-
ior, particularly in how the transmembrane potential changes

over time!2. Most cardiac cells are excitable systems, with a
stable rest state and production of an action potential when
a super-threshold stimulus is supplied, leading to propaga-
tion of electrical waves that activate the heart’s contraction in
space’. As the period of stimulation is decreased below a crit-
ical value, often a bifurcation occurs to a state of alternans*°,
in which action potentials alternate in duration and amplitude’
between long and short; further bifurcations to higher-order
rhythms also can occur. In space, alternans can become
very complex®~!2 and frequently degenerates into the disorga-
nized and potentially lethal state of fibrillation, characterized
by one or more reentrant spiral or scroll waves of electrical
activity rotating at frequencies several times faster than the
heart’s natural pacemaker-driven rhythm'>-13. A number of
methods to control cardiac alternans, and thereby to prevent
one important route to fibrillation, have been proposed!¢-2°;
however, many factors make application of such methods dif-
ficult, including the speed with which alternans can transition
to fibrillation”-?!. Accurate and rapid forecasting®? of future
cardiac voltage states could provide crucial time to intervene
before fibrillation develops>3~2>. In this manuscript, we inves-
tigate how machine-learning (ML) techniques developed for
time-series forecasting can be employed to help predict car-
diac electrical dynamics efficiently and accurately.

In general, time series are a natural way to represent se-
quential and temporal data that are ubiquitous in a wide
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range of real-world applications, including biology?®, climate
science?’, anomaly detection in computer networks>® and so-
cial networks?’, finance3*>*, and energy®—37. Accordingly,
time-series forecasting has remained an interesting, yet chal-
lenging, problem for decades. In recent years, advances in
deep-learning approaches have provided functional alterna-
tives that outperform traditional techniques in many time-
series forecasting applications.

Recurrent neural networks (RNN5s) and especially the gated
architectures, such as the long short-term memory networks
(LSTMs) and the gated recurrent units (GRUs), have been
demonstrated to be successful for predicting time series in
many applications, such as voice recognition®®, natural lan-
guage processing®’, analyzing and forecasting market data*.
However, they are not always successful in long-term predic-
tion of complex time series representing the state of nonlinear

and chaotic dynamical systems??.

The reservoir computing (RC) framework was introduced
as a learning paradigm derived from RNNs in which the hid-
den layer is composed of a set of hidden units connected to
each other randomly and the training process remains lim-
ited to the output layer*'*>. Despite this considerable sim-
plification resulting in a substantial reduction in the computa-
tional costs, these networks have shown to be very successful
in forecasting nonlinear and chaotic time series**#°. Echo
state networks (ESNs) are a commonly used realization of RC
framework, and several variants of these networks have been
proposed and evaluated®’. Nonetheless, on account of the in-
trinsic randomness in constructing ESNs, obtaining reliable
prediction results heavily depends on finding an appropriate
set of hyperparameters and network parameters when form-
ing the network, which can be cumbersome, and the added
computational expense of searching for appropriate parame-
ter values may degrade the overall efficiency of the approach.
This sensitivity of ESNs to its hyperparameters and randomly
chosen untrained parameters makes it unclear whether this ap-
proach will be useful for real-world applications. Still, the
low computational cost and promising results in forecasting
chaotic time series has motivated further research to improve
the reliability and robustness of ESNs*647,

We previously demonstrated for cardiac voltage time
series®” that ESN performance can be highly affected by the
time resolution of the input time series and that resampling
can considerably improve the prediction ability of the ESN
while reducing its sensitivity to the initial values. We also il-
lustrated that an adaptive resampling, which selects a subset
of points in the dataset designed to maintain adequate resolu-
tion in both time and the variable of interest, can effectively
improve the prediction results. However, such a resampling
approach needs expert supervision and tuning efforts to guar-
antee the important features of the input time series are in-
cluded in the resampled version.

These observations suggest the application of a feature-
extraction method to learn an implicit representation of the
input time series and circumvent the need for a manual resam-
pling step. Accordingly, this work introduces an AE-ESN, an
integration of an autoencoder (AE) into the ESN framework
to predict the cardiac action potential time series, wherein an

LSTM AE provides a feature-extraction component. We ap-
ply the integrated approach to forecasting cardiac action po-
tential time series obtained in silico and in ex-vivo experi-
ments that exhibit nonlinear behaviors. We demonstrate that
this technique provides higher prediction accuracy compared
to the baseline ESN and a physics-informed variant of ESN,
also known as a hybrid ESN (HESN). In particular, the pro-
posed AE-ESN approach improves prediction accuracy, with
the ESN approaches achieving the mean absolute error (MAE)
values between six and 14 times higher for the cases consid-
ered, and can capture the dynamics of the system described
by the input time series, while its performance is almost inde-
pendent of the initial network parameters.

The rest of this paper is organized as follows. Section II
presents background about ESNs and AEs and highlights the
main features of their design. The details of the proposed
method are discussed in Section III, and its performance in
forecasting nonlinear synthetic and experimental time series
of cardiac voltage is evaluated in Section IV. Finally, Sec-
tion V presents some discussion and concluding remarks.

II. BACKGROUND

Below, we briefly review the main components of the ESNs
and AEs.

A. Echo state networks

Echo state networks (ESNs) were introduced as a realiza-
tion of the reservoir computing (RC) paradigm in which the
recurrent layer is represented as a reservoir of randomly con-
nected hidden units, and the training process remains limited
to the weights of a linear memory-less readout layer. Con-
sequently, ESNs offer a low-computational-cost approach for
forecasting time series and have been employed to model and
predict nonlinear time series for the last two decades*!*.

Fig. 1a illustrates the main components of an ESN: (i) an
input layer accommodating the input time series, (ii) a ran-
domly built reservoir of sparsely connected neurons, and (iii)
a readout layer. The most commonly used variant of ESNs
employs the “leaky” update model*®, where the state update
reads as

h;=(1—a)h, | +atanh(W"z, + Wh,_1). (1)

In this formalism, W™ and W are randomly initialized ma-
trices representing the input weight and reservoir weight ma-
trices, respectively, and both remain untrained. The reservoir
state at time step ¢ is denoted by h, and o € [0, 1] is defined
as the leaking rate. The size of the input layer is determined
by the number of input variables, which are denoted by z;.
Accordingly, the output of the network is calculated by the
following equation:

y = [ (W [z b)), 2

where f°* denotes the output layer activation function, nor-
mally chosen here as a unity function. The output weights
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FIG. 1. The main components of (a) an ESN, including the input
layer, reservoir of randomly connected neurons, and the output read-
out layer, and (b) an HESN with an additional input signal from the
knowledge-based model.

WU are obtained by regularized least-square regression with
Tikhonov regularization to avoid overfitting.

In the case of physical dynamical systems, domain knowl-
edge can also be integrated into an ESN to construct a hy-
brid physics-informed variant of ESNs known as HESN.
This approach has recently been demonstrated to be effec-
tive for forecasting nonlinear time series in a number of
applications?>**-3!, HESNs add a knowledge-based mathe-
matical model describing an approximation of the dynamical
system as an additional input fed into the network to improve
its prediction performance (see Fig. 1b). Since this method
has been shown to be successful for predicting cardiac action
potentialszz, in this work, in addition to the baseline ESN, we
also compare the obtained results with an HESN.

B. Autoencoder

AEs are unsupervised neural networks trained to recon-
struct the input data, for which they aim to learn an ap-
proximation of the identity function by setting the target
values equal to the inputs®>. Such architectures originally
were introduced for internal representation learning and fea-
ture extraction>?, but later their applications were extended to
anomaly detection®*>3, nonlinear dimensionality reduction®,
and recommender systems.” .

As demonstrated in Fig. 2, an AE consists of three main
components: (i) the encoder, which compresses the input into
a latent space representation and provides a reduced represen-
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FIG. 2. The main components of an AE, including the encoder, the
latent space also known as the bottleneck layer, and the decoder.

tation of the input data; (ii) the latent space sometimes known
as the bottleneck or the code layer, which represents the com-
pressed version of the input; and (iii) the decoder, which de-
codes the encoded representation back to the original dimen-
sion. This purposefully designed structure enables AEs to au-
tomatically extract the high-level features of the input data by
imposing certain constraints on the the network, such as limit-
ing the number of hidden units in the bottleneck layer’®. The
automatically learned features can then be used to improve the
prediction ability in other ML techniques, particularly com-
pared to cases where features are selected manually>®-!.

AEs normally are trained by applying the back-propagation
approach to minimize the reconstruction error between the
input data and the reconstructed data obtained at the output
layer. This error is usually measured by squared error or
cross entropy. Accordingly, optimization techniques, such as
stochastic gradient descent (SGD), can be employed to opti-
mize the obtained loss function and train the network.

Several variants of AEs have been proposed to learn richer
representations of the inputs, such as deep AEs®>%3, which
take advantage of higher degrees of nonlinearity to extract
the high-level features, and LSTM AEs, in which LSTM lay-
ers are employed for the encoding and decoding phases®4-°.
LSTMs and gated RNNs in general are considered the most
effective approaches for dealing with sequential data and fore-
casting time series®2; memory cells replace the usual hid-
den units in the network, making them successful in a wide
range of practical applications*3®7. Accordingly, the LSTM
AEs have been successfully employed in feature extraction
and anomaly detection tasks in various real-world applications
where time series data are involved®®~7!.

Il. METHODS

A. Architecture

Conventional ESNs (see Fig. la) apply a complex non-
linear transformation to the input data mapping the given
time series to a higher-dimensional space, where the reser-
voir of randomly connected neurons constructs a represen-
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FIG. 4. Integrated architecture of the LSTM AE and ESN, where the input time series and the extracted features are input to the ESN.

struction, which makes them highly sensitive to the values of
non-trainable parameters. This particularly becomes a prob-

lem when the input time series demonstrates highly nonlinear
22,73

tation of the input data. Therefore, the size of the reser-
voir must be large enough to provide rich dynamics and to
capture the behavior of the dynamical system represented by
the input time series’2. However, the capabilities of ESNs behavior
can be obscured by the intrinsic randomness in their con- To overcome these limitations and to achieve a better repre-
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sentation of the inputs, we introduce the AE-ESN approach in
which an LSTM AE is integrated into the ESN framework. In
our proposed technique, at first, an LSTM AE is trained using
the training dataset to learn the higher-level features of the in-
put data, then the trained encoder serves as a feature extraction
layer located between the input layer and the recurrent reser-
voir. Thus, instead of the direct use of input data, the learned
features are fed to the ESN reservoir. Fig. 3 outlines the main
features of the proposed approach.

It also has been demonstrated that the compressed represen-
tation learned by such unsupervised AEs can be employed as
additional inputs to other supervised ML methods to improve
prediction performancesz’M. Therefore, in this work, we also
investigate augmenting the ESN inputs with the extracted fea-
tures obtained in the AE latent space, as shown schematically
in Fig. 4.

Network parameters for our implementations are selected
through a hyperparameter optimization process, as described
below in Section IITE, with specific values given in Ta-
bles S1, S2, and S3 in the supplementary material.

B. Training

The optimum values of weights and biases of the AE and
the weights of the readout layer in ESN are determined during
the training process, which includes two main steps. First, an
AE is constructed by stacking LSTM layers in the encoder and
decoder parts to form a symmetrical architecture. This model
is trained by a back-propagation approach using the training
data. Once the model is trained, the reconstruction part of
the network can be discarded, and only the trained encoder is
connected to the ESN reservoir. The output of such a trained
AE at the bottleneck provides a fixed-length vector, which can
be interpreted as the compressed representation of the input
data and is treated as an additional input to the ESN.

Afterwards, the weights of the readout layer, i.e., W%,
are obtained using a regularized linear regression method. For
this purpose, the switch in Fig. 4 is set to the “Training” mode.
Then, the training dataset is input to the network, one value at
a time, and the states of the reservoir hidden units are recorded
in an n-by-d state matrix H, where 7 is the reservoir size and
d is the number of training time steps. Also, the desired out-
put values are stored in a vector y. Accordingly, the readout
weights can be obtained in one step using the Moore-Penrose
generalized matrix inverse, or the pseudo-inverse of the matrix
H as follows:

W = (HTH+AI) H'y, 3)

where, A is the regularization factor in the ridge regression
method and I denotes the identity matrix.

One important consideration in the ESN training phase is
discarding the states of the initial steps of the network. This is
crucial to guarantee that the initial states of the reservoir are
washed out and the state matrix only includes the state of the
system describing its dynamics. In this work, we assign the
beginning of each time series containing the first ten action
potentials as the pretrain period, where the network states are

discarded and do not contribute in the training process (see
Figs. 5, 6, and 7).

More information about the hyperparameter selection pro-
cess are included below in Section IIIE; specific values for
the hyperparameters can be found in Tables S1, S2, and S3 in
the supplementary material.

C. Prediction

For the prediction phase, when the fully trained model is
employed for forecasting the future values, the switch in Fig. 4
is set to the “Prediction” mode. In this way, once the readout
layer is trained, a recursive approach performs multi-step pre-
diction into the future, where the prediction results at each
time step are provided as the input for the next time step.

D. Datasets

The effectiveness of the proposed approach is evaluated by
predicting three cardiac action potential time series, the char-
acteristics of which are described in this section.
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FIG. 5. Action potential time series generated by the Fenton-
Karma model with the random pacing approach described in the text.
(a) Voltage time series including pre-training data (gray), training
dataset (blue), and testing dataset (black). (b) Voltage trace corre-
sponding to the shaded region in panels (a) and (c) illustrating the
variation in the action potential shapes and durations. (c) Corre-
sponding APDs following the same color scheme as panel (a).

1. Dataset 1: Fenton-Karma

The first dataset?” is a randomly timed action potential
time series generated using the Fenton-Karma (FK) model”>
including a voltage variable and two gating variables. The
Beeler-Reuter fitting of the FK model, where the parameters
are set to parameter set 3 in Ref.”®, is used and the forward
Euler method with a fixed time step of 0.1ms is employed to
solve the corresponding differential equations. To generate
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complex dynamics, the cycle lengths are drawn from a nor-
mal distribution centered at 320ms with a standard deviation
of 50ms, where a 2-ms stimulus voltage is applied with a rel-
ative magnitude of 0.2 at the beginning of each cycle. Cy-
cle length values both below and above the bifurcation point,
beyond which alternans would be generated for a fixed cy-
cle length, are included to allow a wide range of APD val-
ues (about 200ms). Fig. 5 demonstrates (a) the resulting volt-
age trace and (b) the corresponding action potential duration
(APD) values. The training dataset (blue) includes nearly 80
action potentials, while the testing dataset (black) includes
about 20 action potentials.

1 JPre—train LI“rain ‘ Test |
1)
en
205t g
>
L@ ‘ ‘ ‘ ‘ ]
0 10 20 30 40
Time (s)
1
280
© v
& E260
E05
3 [a)
S & 240
0 220
10 11 12 0 50 100 150
Time (s) Beat index

FIG. 6. Action potential time series generated by the Beeler-Reuter
model. (a) Voltage time series including pre-training data (gray),
training dataset (blue), and testing dataset (black). (b) Voltage trace
corresponding to the shaded region in panels (a) and (c) illustrat-
ing the variation in action potential shapes and durations. (c) Corre-
sponding APDs following the same color scheme as panel (a).

2. Dataset 2: Beeler-Reuter

The second dataset is generated using a version of the
Beeler-Reuter (BR) ventricular cell model’’modified to gen-
erate chaotic signals via a nonmonotonic APD restitution
curve’®. The BR model consists of a voltage variable, six
gating variables, and the intracellular calcium concentration,
with nonmonotonic restitution achieved by blocking one of
the potassium currents (for more detail, see Ref.”®). The cycle
length is set to 350ms and a 2-ms stimulus voltage is applied
with a relative magnitude of 0.2 at the beginning of each cy-
cle. The corresponding differential equations are solved with
a fixed time step of 0.1 ms using forward Euler for the voltage
and calcium variables and backward Euler for the gating vari-
ables to improve stability. Fig. 6 illustrates the generated time
series consisting of about 140 beats, where the first 10 beats
are used in the pre-training phase (gray), 102 beats for training
the models (blue), and the remaining 28 beats for the testing
dataset (black). Note that the time series is linearly scaled to
be within [0, 1].
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FIG. 7. Experimental action potential time series obtained as a mi-
croelectrode recording from a zebrafish heart. (a) Voltage time series
including pre-training data (gray), training dataset (blue), and testing
dataset (black). (b) Voltage trace corresponding to the shaded re-
gion in panels (a) and (c) illustrating the variation in action potential
shapes and durations. (c) Corresponding APDs following the same
color scheme as panel (a).

3. Dataset 3: Experimental Data

The third dataset is a microelectrode recording of voltage
recorded from a zebrafish heart as described in?Z; it has been
normalized to lie within the interval [0,1]. Note that the ze-
brafish heart is tiny (~ 1 mm) and we have not observed any
meaningful spatiotemporal dynamics in these hearts. In addi-
tion, microelectrode recordings reflect the activity of a single
cell, even though the cell is in tissue. Thus, we believe it is ap-
propriate not to consider spatial effects in the zebrafish heart.
Fig. 7 illustrates the experimental dataset consisting of about
170 beats, where the first 10 beats are used in the pre-training
phase (gray), 125 beats for training the models (blue), and the
remaining 35 beats for the testing dataset (black).

E. Implementation

The proposed approach has been implemented in MATLAB
(R2021a), where the AE component is built on top of the
Deep Learning toolbox. To construct the AEs, the LSTM
layers are generated using the IstmLayer class and stacked,
while dropout layers are interleaved with them to avoid over-
fitting issues. After training the AE in the first step of training
(see Section III B), to connect the trained encoder to the ESN,
a fully connected layer with the same size as the bottleneck
layer is added at the end to transfer the extracted features to
the ESN reservoir.

For all datasets, the architecture of the adopted AE-ESN
model is similar to Fig. 4, with the extracted features fed to
the reservoir along with the input action potential time series.
In our initial experiments, we found this topology more effec-
tive compared to the other integrated architecture illustrated
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in Fig. 3; see supplementary material for more details.

To obtain the optimum values of the hyperparameters re-
quired to build the AE-ESN, along with the ESN and HESN
models, for each dataset, an extensive grid search was con-
ducted, where the set of searched values and the optima found
are presented in Tables S1, S2, and S3; the selected optimum
values are highlighted in bold.

In comparison to the standard RC techniques, training an
LSTM AE is computationally expensive and involves many
hyperparameters, including the number of hidden units and
hidden layers; the maximum number of training epochs; and
the optimizer used for training and its corresponding hyperpa-
rameters, such as the regularization factor, the learning rate,
and the learning rate drop factor. Therefore, conducting a full
grid search on all these parameters in the same way we did for
the ESN and HESN parameters is not practically feasible. Ac-
cordingly, in this work, we limit our grid search to finding the
optimum values of the most important hyperparameters, i.e.,
the number of hidden units and hidden layers and the learn-
ing rate (see Tables S1, S2, and S3), while the rest of the
hyperparameters are set to the best found values in our initial
experiments. Toward this end, we used the Adam optimizer
to train the network with the corresponding default training
configurations in MATLAB. The maximum number of train-
ing epochs is set to 50 with early-stopping validation patience
set to 4 to avoid overfitting. We also used dropout layers with
the probability of 0.2 interleaving the LSTM layers for further
overfitting avoidance in the AE.

IV. RESULTS

We apply the proposed technique to predict three time se-
ries of cardiac action potentials. The results obtained using the
AE-ESN method are compared with baseline ESN and HESN
approaches, whose details have been discussed in our previous
work?>7?; a summary of the configuration used is presented in
the supplementary material.

One important consideration about this comparison is that
cardiac cells in experiments generally are stimulated exoge-
nously, so that in data-driven prediction of action potential
time series the pacing stimulus also must be introduced to the
predictive model as an additional input signal (see Fig. S1).
In contrast, in the proposed AE-ESN approach, the trained
encoder handles the feature extraction task automatically and
provides the ESN part with the required pacing information.
Therefore, the AE-ESN results are obtained without feeding
explicit pacing information to the network and without man-
ual re-sampling of the input action potential time series, as
opposed to the ESN and HESN approaches.

A. Dataset 1: Fenton-Karma

Figure 8a-c show the 19 action potentials predicted by the
AE-ESN approach along with those from the ESN and HESN
approaches. Compared to the ESN and HESN techniques, the
voltage values predicted by the proposed AE-ESN approach
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FIG. 8. FK voltage values predicted by the (a) ESN, (b) HESN, and
(c) AE-ESN for about 19 action potentials. Target values are plotted
in black for comparison. Panel (d) shows the absolute error values
at each time step for the three methods, and panels (e)-(g) show his-
tograms of error values for each method along with the correspond-
ing means and standard deviations.

are more accurate in terms of the absolute metric demon-
strated in Fig. 8d, which also shows that there is no appre-
ciable growth in error over time (the slopes of linear fits to
the prediction error values over time are 0.0029, 0.0023, and
0.0005 for ESN, HESN, and AE-ESN, respectively). Fig-
ure 8e-g illustrate the distributions of the absolute prediction
error for each method and show that the mean absolute error
(MAE) for the AE-ESN (0.008) is smaller than the MAE val-
ues for the ESN (0.046) and HESN (0.055) by factors of 5.8
and 6.9, respectively. Additionally, the predicted APD values
in Fig. 9 demonstrate that all three methods can accurately
predict the APD values, with the MAE of the predicted APDs
obtained by the AE-ESN the smallest by factors of 1.7 and 1.9
compared to the ESN and HESN, respectively.

Note that the features extracted by the autoencoder can be
difficult to interpret. Figure S2 shows the output of the en-
coder for the FK dataset. Although it is not obvious why these
features were selected, together they are used to form a good
approximation of the system, and basic properties such as ac-
tion potential timing and shapes are recognizable in many of
the output signals.

One major drawback with ESN techniques is the sensitiv-
ity of the prediction performance to the initial values of the
model parameters and the initialization technique. Therefore,
after constructing an ESN, extra effort is required to find an
appropriate set of parameters, which usually consists of an
extensive grid search. In contrast, AE-ESN is less sensitive to
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FIG. 9. APD prediction results for the FK dataset obtained by the (a)
ESN, (b) HESN, and (c) AE-ESN for about 19 heart beats. Target
values are plotted in black. Panel (d) shows the absolute error values
for each APD, and panels (e)-(g) show histograms of error values
for each method along with the corresponding means and standard
deviations.
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FIG. 10. Range of the predicted voltage values of the FK dataset ob-
tained by 100 different randomizations using the (a) ESN, (b) HESN,
and (c) AE-ESN approaches. Maximum and minimum voltage val-
ues obtained across the 100 trials are shown to outline the shaded
regions.

the initialization, and once the model is created, the initializa-
tion does not affect the prediction performance. To evaluate
this property, each of the three compared models were run
with 100 various random initializations and the ranges of the
predicted values are illustrated as shaded regions in Fig. 10. In
the ESN approach, the range of the predicted values obtained
by different initializations are narrow for only the first 3 beats
and start to grow over longer times. For instance, at the end
of the predicted 19 beats, the prediction results differ from
the ground truth by more than 300%. In contrast, although
the range of the HESN prediction results started to grow after
the first two beats, this range remains limited for a longer pe-
riod of time, indicating that the knowledge-based model can
reduce variation in the prediction values. Finally, the bottom
panel in Fig. 10 demonstrates the range of prediction results
obtained by the proposed AE-ESN approach with 100 random
initial values, which reveals that the range of predicted values
remain narrow and close to the target values for the entire test
dataset. This finding indicates that even though the reservoir
and the associated input weights are randomly constructed,
taking advantage of the extracted features can reduce the sen-
sitivity of the method to the initial network parameter values.

B. Dataset 2: Beeler-Reuter
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FIG. 11. BR voltage values predicted by the (a) ESN, (b) HESN, and
(c) AE-ESN for about 28 action potentials. Target values are plotted
in black for comparison. Panel (d) shows the absolute error values
at each time step, and panels (e)-(g) show histograms of error values
for each method along with the corresponding means and standard
deviations.

Predicting the action potentials for the BR dataset yields re-
sults similar to those found for the FK dataset. Figure 11a-c
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show the voltage values across the roughly 28 action poten-
tials of the dataset. Good fittings are obtained in all cases and
the error does not grow appreciably over time, as can be seen
in Fig. 11d (linear fit slopes: 0.00010 for ESN, 0.00022 for
HESN, and 0.00002 for AE-ESN). Nevertheless, the AE-ESN
approach again produces the highest accuracy. Figure 1le-g
show that the MAE obtained is smaller by an order of mag-
nitude for the AE-ESN approach compared to the ESN and
HESN methods (0.002 vs. 0.028 and 0.026 for ESN and
HESN, respectively). In addition, the AE-ESN has the small-
est standard deviation, indicating that the low MAE values
occur consistently across the time series. Because of the low
error across the methods, the APDs can be predicted with little
error for all the methods, as shown in Fig. 12. Still, the MAE
for APDs for the AE-ESN approach is the smallest of the er-
rors for the three methods, with the HESN outperforming the
ESN.

The encoder output for the AE-ESN approach, shown in
Fig. S3, displays features that appear similar in general to the
same type of output for the FK dataset. The signals again
show the timing and shapes of the action potentials in the time
series. Note that the optimal hyperparameters for this dataset
lead to a smaller number of layers and cells for the bottleneck
layer, so that only 16 signals are output.

Figure. 13 demonstrates the sensitivity of the methods to
the random initialization by displaying the range of output at
each time point across 100 different random seed numbers.
This dataset appears much less sensitive to initialization ef-
fects than the FK dataset, such that all three methods have
noticeably smaller variability. Nevertheless, the variability in
the AE-ESN predictions is smaller than the variability for both
the ESN and HESN approaches, each of which demonstrates
more variability within the first few action potentials than the
AE-ESN demonstrates over the entire time series.

C. Dataset 3: Experimental Data

The constructed models were applied to predict the experi-
mental dataset. As can be seen in Fig. 14, the prediction accu-
racy of the AE-ESN measured by the absolute error is higher
(lower error) than for the ESN and HESN techniques (mean:
0.010 vs. 0.059 and 0.057 for ESN and HESN, respectively).
The linear fit slopes (0.0087 for ESN, -0.0003 for HESN, and
0.0006 for AE-ESN) reveal that the error does not grow over
time for the predicted test set. The same pattern can be ob-
served in the APDs shown in Fig. 15, where the absolute er-
rors of the predicted values obtained by the AE-ESN approach
are consistently less than the absolute errors of the predicted
values by the ESN and HESN for almost the entire test dataset.
Figure S4 shows the trained encoder output, which is similar
to what was seen for the other datasets.

To compare the sensitivity of the proposed method to the
random initialization, the models were trained with 100 dif-
ferent random seed numbers and the range of the outputs are
presented as the shaded regions in Fig. 16. The highest vari-
ability occurs for the ESN approach, where the variability in-
creases further into the future, and the range of predicted val-
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FIG. 12. APD prediction results for the BR dataset obtained by the
(a) ESN, (b) HESN, and (c) AE-ESN for about 28 action potentials.
Target values are plotted in black. Panel (d) shows the absolute er-
ror values at each beat, and panels (e)-(g) show histograms of er-
ror values for each method along with the corresponding means and
standard deviations.
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FIG. 13. Range of the predicted voltage values of the BR dataset ob-
tained by 100 different randomizations using the (a) ESN, (b) HESN,
and (c) AE-ESN approaches. Maximum and minimum voltage val-
ues obtained across the 100 trials are shown to outline the shaded
regions.
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FIG. 14. Experimental voltage values predicted by the (a) ESN, (b)
HESN, and (c) AE-ESN for about 19 action potentials. Target values
are plotted in black for comparison. Panel (d) shows the absolute
error values at each time step, and panels (e)-(g) show histograms
of error values for each method along with the corresponding means
and standard deviations.

ues are narrow only for the first two action potentials. The
ranges of the predicted values are narrower for the HESN re-
sults, reflecting the controlling effect of the knowledge-based
model integrated into the network. The best results occur for
the proposed AE-ESN approach, where the range of the ob-
tained results is very narrow and close to the target values for
the entire test dataset.

D. Sensitivity of Results

Each of the methods discussed requires choosing a number
of network settings and parameters. As is typical in machine
learning, we perform an optimization procedure to determine
the values of these parameters and obtain the prediction results
using those values. Using different settings thus would affect
the quality of the prediction. It would be desirable for the
prediction method to be insensitive to key hyperparameters so
that the prediction quality would not depend strongly on the
selection of these parameters. In this section, we demonstrate
the sensitivity of the predictions to several important algorith-
mic parameters.

Some of the main parameters important for ESN ap-
proaches are the number of reservoir hidden units, the con-
nection probability, and the leaking rate, and the spectral ra-
dius. Figures S5 and S6 show the effects on mean absolute
prediction error of separately varying these four parameters
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FIG. 15. APD prediction results for the experimental dataset ob-
tained by the (a) ESN, (b) HESN, and (c) AE-ESN for about 19 ac-
tion potentials. Target values are plotted in black. Panel (d) shows the
absolute error values at each beat, and panels (e)-(g) show histograms
of error values for each method along with the corresponding means
and standard deviations.
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FIG. 16. Range of the predicted voltage values of the experimental
dataset obtained by 100 different randomizations using the (a) ESN,
(b) HESN, and (c) AE-ESN approaches. Maximum and minimum
voltage values obtained across the 100 trials are shown to outline the
shaded regions.
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up to 20 percent for the FK dataset by the ESN and AE-ESN,
respectively. For the ESN, the predictions appear to be least
sensitive to the leaking rate, but even in this case only moder-
ate changes of 5 to 10 percent can yield a substantial decrease
in accuracy. For the other parameters, the ESN is highly sen-
sitive and even moderate changes often lead to results with
unacceptably large error. In contrast, the results from the AE-
ESN maintain low MAE values below 0.01 except in one case
where it is still below 0.015.

For the BR dataset, MAE values remain higher for the
ESN predictions than for the AE-ESN predictions, as shown
in Figs. S7 and S8. Although the MAE values for the ESN
predictions are not as high as for the FK dataset, the AE-
ESN achieves much smaller MAE values below 0.005 in all
cases and roughly an order of magnitude smaller than the ESN
MAE values. Among the four parameters considered, the
ESN demonstrates the greatest sensitivity to the spectral ra-
dius. The experimental dataset shows results similar to those
obtained for the BR dataset, with the ESN most sensitive to
the number of hidden units and the connection probability;
see Figs. S9 and S10. The MAE using the AE-ESN approach
also remains below 0.015 and about an order of magnitude
lower than the ESN error values. Thus, the AE-ESN, in addi-
tion to achieving greater accuracy, also reduces sensitivity to
network parameters.

Another important parameter is the time resolution used in
the input signals. For the ESN and HESN methods, the sig-
nals are resampled according to a parameter included during
the optimization process, so this discussion is focused on re-
sults using the AE-ESN, which uses a fixed temporal resolu-
tion. Figures S11 and S12 show the results of changing the
temporal resolution of the FK dataset from its baseline (shown
in panel (b) in both cases), which includes about 9 points to
resolve the upstrokes; specifically, increasing resolution by a
factor of 2 (panel (a)) and decreasing resolution by factors of
2.5, 5, 10, and 20 (panels (c)-(f)). The MAE increases as the
resolution of the training set decreases; it scales by about a
factor of -1.5 with the number of points in the training set.
Visibly, the action potentials appear nearly identical even up
to a temporal resolution of the dataset that is five times coarser.

V. DISCUSSION AND CONCLUSION

In this work, we have proposed a novel integrated architec-
ture in which an LSTM AE is integrated into the ESN frame-
work, with the trained encoder serving as a feature extraction
layer feeding the extracted feature into the recurrent reservoir
in the ESN. We tested this approach against both synthetic
and experimental datasets; in all cases, the predictions across
about 20 action potentials show a considerable improvement
in both robustness and prediction performance when using
the AE-ESN compared to the ESN or HESN approaches, as
shown in Figure. S13. In particular, prediction accuracy for
the voltage is 6-14 times lower when using the AE-ESN in
terms of MAE. Notably, the best improvement occurred for
the experimental data case, with voltage prediction errors dif-
fering by factors of 14 and 13 for the ESN and HESN meth-

ods, respectively, when compared to the AE-ESN. We also
evaluated the sensitivity of the proposed approach to the ini-
tial network parameter values and demonstrated that, in con-
trast to the ESN and HESN approaches, the results obtained
by the AE-ESN technique show minimal dependence on the
initial values as well as on the network parameters.

Understanding the source of the considerable improve-
ments achieved by integrating an AE into the ESN framework
requires considering whether a standalone LSTM AE with-
out an ESN may also be capable of capturing the dynamics
of the system and provide reliable predictions. However, the
application of LSTM AEs for forecasting both synthetic and
experimental action potential time series resulted in poor pre-
diction performance, revealing that a single AE is incapable
of forecasting such highly nonlinear time series. These poor
prediction results are not presented in Section IV to avoid in-
consistency and dramatic changes in the plot scales. This find-
ing demonstrates that the the combination of an LSTM AE
with an ESN overcomes the poor prediction of complex car-
diac time series of the former and the high sensitivity to initial
parameters of the latter to produce a robust and effective ap-
proach for forecasting these nonlinear time series.

The requirement for training an LSTM AE increases the
computational time needed for this approach, which reduces
the benefit of the fast training process and low computational
cost characteristics typical of ESNs. A fair comparison of the
computational time was not possible in this study since the
AEs were trained using a GPU while the rest of the computa-
tions were handled by the CPU. Still, training the AE was the
most computationally expensive part of the process in the AE-
ESN approach; depending on the complexity of the AE archi-
tecture and the size of the training dataset, it could take 1-2 or-
ders of magnitude longer than the rest of the process in terms
of wall-clock time for the three evaluated test cases. However,
the reduced sensitivity of the AE-ESN to network parameters
potentially could offset the increased computational time of
the AE by allowing use of a lower-resolution grid search in
comparison to baseline ESNs.

An importation limitation of the methods used in this study
is that they are purely data-driven and thus are agnostic to the
source of the time series. As a result, we cannot predict how
well the methods will generalize to other datasets, including
time series obtained under other conditions such as different
pacing protocols; synthetic datasets generated from the same
model using different parameters or from another model; or
experimental datasets recorded from the same experimental
preparation at a different time or location, different prepa-
rations from the same species, or different species. For the
same reason, the best performance is obtained by optimizing
hyperparameters and performing training anew for each time
series and/or change to untrained network parameters, which
imposes a high computational cost at present if prediction is to
be performed multiple times. It is an area of active research to
understand how optimization and training for one dataset may
be used to facilitate the same tasks for a different dataset that
has some similarities®*8!. Such transfer learning eventually
may decrease computational costs, for example, by identify-
ing how optimized hyperparameter values obtained for one
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dataset may be used to decrease the grid search time.

We note that the AE-ESN accuracy improvements are more
modest when predicting APD rather than a more detailed pre-
diction of voltage (and thus action potential shape), especially
for the synthetic datasets. Given the increased computational
costs of the AE-ESN approach, the simpler ESN or HESN
may be a useful strategy when predicting only APD values,
but for experimental data the higher accuracy achieved by the
AE-ESN may justify the extra cost.

In terms of parameter sensitivity across the three datasets,
the main conclusion for the ESN was that the accuracy did not
depend strongly on the leaking rate. For the other parameters,
changes to the values resulted in poor accuracy for at least one
but not all datasets considered. No clear conclusions could be
drawn regarding the parameters to which the AE-ESN was
most sensitive, as the error changed little within the parameter
variations considered.

For the HESN, sometimes unphysiological values, includ-
ing negative voltage values, can be obtained depending on the
initialization. In this approach, there is no guarantee for the
output to remain within the expected physical range, since the
domain knowledge is integrated as an additional time series
fed to the network to promote the training process and does
not directly impose constraints.

It should also be noted that in this study we considered a
limited number of action potential datasets; different results
may be obtained for different time series representing differ-
ent dynamical behavior. As such, although we would expect
that the same methods could be used for datasets from hearts
of different species including human hearts, further study is
needed to identify characteristics needed for successful long-
term prediction. Furthermore, we considered a limited num-
ber of hyperparameters in the grid search process, and it is
possible that different sets of hyperparameter values could
generate different results.

SUPPLEMENTARY MATERIAL

Additional information regarding the Methods and Results
is available in the supplementary material, as indicated in the
text.
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SUPPLEMENTARY MATERIAL

This supplement includes details about the ESN and HESN implementations along with additional tables and figures refer-
enced in the main text.

ESN and HESN Implementation Details

Figure S1 exhibits the ESN and HESN architectures employed for prediction of action potential time series, which are a
special case of the general topology illustrated in Fig. 1, where the input to the network is a multivariate time series including
the cardiac action potential and the pacing stimulus driving the network.

Input Layer Reservoir Output Layer
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FIG. S1: The main components of (a) the ESN and (b) HESN for prediction of cardiac action potential time series

Moreover, in the HESN, an additional input is required for the knowledge-based model time series. The knowledge-based
model and the ESN operate simultaneously during the training and prediction. Therefore, the input layer in HESN accommodates
three input variables: (i) the pacing stimulus exciting the network at prescribed interval which is denoted by x;(z), (ii) the
knowledge-based model denoted by x;(¢) = Vig(¢), which can be any imperfect model providing an approximation of the cardiac
cell voltage dynamics, and (iii) the time series representing voltage measurements denoted by x3(¢) = V (¢), where in this work,
it is the synthetic measurements generated by the FK model in the first example, or the experimental data in the second example.
Therefore, the input signal vector can be written as,

X = [(x1(2);x2(2);x3(2)] - (D

Accordingly, the update equation of the reservoir state 4, is identical to Equation 1. In this work, we used the Corrado-Niederer!
update of the two-variable Mitchell-Schaeffer? model with T, = 0.3 ms, T,,; = 6 ms, Topen = 40 mS, T¢jp5e = 20 ms, and
Veate = 0.13.
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FIG. S2: Visualizing the output of the trained encoder for the FK time series. The range of the y-axis for the input time series is
[—0.2,1.2], and for the rest of the subplots representing the trained encoder outputs the y-axis range is set to [—1, 1].
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FIG. S3: Visualizing the output of the trained encoder for the BR time series. The range of the y-axis for the input time series is
[—0.2,1.2], and for the rest of the subplots representing the trained encoder outputs the y-axis range is set to [—1, 1].
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FIG. S4: Visualizing the output of the trained encoder for the experimental time series. The range of the y-axis for the input
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~1,1].




1 ro . I T ¥ ¥ ¥
Number of Reservoir Hidden Units o
g o
05 — —
=
0 | | | [0] | | |
-20 % -10 % -5 % 0% 5% 10 % 20 %
1 — ¥ ¥ T ¥ T ¥
Connection Probability (pr)
<
05— —
=
o
0 | | | o | | |
-20 % -10 % -5 % 0% 5% 10 % 20 %
1 ) \ \ \ \ ¥ \
Leaking Rate
2
05 — —
= o
0 ! ? [0} o ! ! ®
-20 % -10 % -5 % 0% 5% 10 % 20 %
1 - ¥ T T ¥ ¥ T
Spectral Radius
2
05 — —
>
o
0 \ \ Q o) \ \ \
-20 % -10 % -5 % 0% 5% 10 % 20 %

Perturbation from Grid Search Optimum Value

FIG. S5: Sensitivity of the ESN hyperparameters for predicting the FK time series. To facilitate visualization of the low-error
cases, red x’s represent cases where the error values are above 1 and the network provides poor predictions.

Number of Res‘ervoir Hidden Units ‘
m 001 = o -
< o o o ) o o
Z0005 |- .
0 | | | | | | |
-20 % -10 % -5 % 0 % 5% 10 % 20 %
Connection Pro‘babili(y (pr) ‘ ‘ ‘ ‘ ‘ ‘
m 001 - o .
< o o o o [e] [e]
20005 .
0 | | | | | | |
-20 % -10 % -5 % 0% 5% 10 % 20 %
. I I I I I I I
Leaking Rate
m 001 o -
< o o o o o o
Z0005 |- .
0 | | | | | | |
-20 % -10 % -5 % 0% 5% 10 % 20 %
S Al Radi I I I I I I I
ool pectral Radius o
m K — =
< o o o o o o
Z0005 |- .
0 | | | | | | |
-20 % -10 % -5 % 0 % 5% 10 % 20 %

Perturbation from Grid Search Optimum Value

FIG. S6: Sensitivity of the AE-ESN hyperparameters for predicting the FK time series.



Number of Reservoir Hidden Units
m
Lol -
= o
(o] o o o
0 ? | | ? | | |
-20 % -10 % -5 % 0 % 5% 10 % 20 %
0.2 \ \ \ \ \ ¥
Connection Probability (pr)
m
Lol -
= o
[e] o o
o
0 ! \ | ? I \ |
-20 % -10 % -5 % 0% 5% 10 % 20 %
0.2 \ \ \ \ \ \ \
Leaking Rate
<
0.1 -
=
o o o
0 | | | ? ? ? ?
-20 % -10 % -5 % 0 % 5% 10 % 20 %
0.2 ¥ \ \ \ \ I \
Spectral Radius o]
<
0.1 -
= ° ° o
o
0 | | | ? | | |
-20 % -10 % -5 % 0 % 5% 10 % 20 %

Perturbation from Grid Search Optimum Value

FIG. S7: Sensitivity of the ESN hyperparameter for predicting the BR time series. To facilitate visualization of the low-error
cases, red x’s represent cases where the error values are above 0.2 and the network provides poor predictions.

0.01 T
m Number of Reservoir Hidden Units
L0005 -
=
[e] o [e] [e] o [e] o
0 | | | | | | |
-20 % -10 % -5 % 0 % 5% 10 % 20 %
0.01 \ \ \ \ \ \ \
ﬁ Connection Probability (pr)
0.005 —
=
[e] [e] [e] [e] [e] o o
0 | | | | | | |
-20 % -10 % -5 % 0 % 5% 10 % 20 %
0.01 \ \ \ \ \ \ \
m Leaking Rate
<2i 0005 o -
[e]
o o 1o o [e]
0 | | | | | | |
-20 % -10 % -5 % 0% 5% 10 % 20 %
0.01 \ \ \ \ \ \ \
ﬁ Spectral Radius
0005 - -
= [e] o
o o ) o )
0 | | | | | | |
-20 % -10 % -5% 0 % 5% 10 % 20 %

Perturbation from Grid Search Optimum Value

FIG. S8: Sensitivity of the AE-ESN hyperparameter for predicting the BR time series.




Number of Reservoir Hidden Units
<
0.1 - o _
= ° ° o o
0 | | | | | | |
-20 % -10 % -5 % 0 % 5% 10 % 20 %
02 S ¥ \ \ T \ T
Connection Probability (pr)
> o
Zol - ° -
= [e]
0 | | | | | | |
-20 % -10 % -5 % 0% 5% 10 % 20 %
02 - T T T T T T T
Leaking Rate
<
0.1 - —
= o o o [¢] (e] [e] o
0 | | | | | | |
-20 % -10 % -5 % 0 % 5% 10 % 20 %
02 — T T T T T T
Spectral Radius
<
0.1 - —
= o o o o o o o
0 | | | | | | |
-20 % -10 % -5 % 0 % 5% 10 % 20 %

Perturbation from Grid Search Optimum Value

FIG. S9: Sensitivity of the ESN hyperparameter for predicting the experimental time series. To facilitate visualization of the
low-error cases, red x’s represent cases where the error values are above 0.2 and the network provides poor predictions.

Number of Reservoir Hidden Units
m o o
Z001 o o o o o |
=
0 | | | | | | |
-20 % -10 % -5 % 0 % 5% 10 % 20 %
0.02 \ \ \ \ \ \ \
Connection Probability (pr)
= o
Lool o o o o ° ° |
=
0 | | | | | | |
-20 % -10 % -5 % 0 % 5% 10 % 20 %
0.02 \ \ \ \ \ \ \
Leaking Rate
83} o o
<001 o o ° o o _
=
0 | | | | | | |
-20 % -10 % -5 % 0% 5% 10 % 20 %
0.02 \ \ \ \ \ \ \
Spectral Radius
[sa) o o
001 - ° o o o o ,
=
0 | | | | | | |
-20 % -10 % -5% 0% 5% 10 % 20 %

Perturbation from Grid Search Optimum Value

FIG. S10: Sensitivity of the AE-ESN hyperparameter for predicting the experimental time series.



oo

N =249027

—
I

LU
T
[ - 1 WODWW LT

0 5 10 15 20 25

Time (s)

w
=]

FIG. S11: Application of the AE-ESN to the FK dataset with different temporal resolutions. The training datasets are shown in
blue and the prediction results in red. The number of data points in each time series is denoted by N. The resolutions shown
represent (a) an increase by a factor of 2, (b) the baseline resolution, and (c¢)-(f) decreases in resolution by factors of 2.5, 5, 10,
and 20.

N =249027
MAE=0.0035

N=124514 L
MAE=0.0078

N= 49806 |
MAE=0.0297

N=24903 [
MAE=0.0559

Magnitude

N= 12452 [
MAE=0.0654

N= 6226 |
MAE=0.0904

Kb Lt L[ M Bl LY i N 5" R’ W Ngiaies N g - TR
25 26 27 28 29 30 31

Time (s)
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TABLE S1: Hyperparameter values used for the grid search optimization for each prediction method to predict the FK time
series. The selected optimum values are indicated in bold.

Methods Parameters Values
Number of reservoir hidden units (n,-) {60,100,200, 300,400,500}
Resampling voltage threshold?® (6) {0.00,0.01,0.02,0.03,0.04 }
Resampling time threshold® () {20,30,40,50}
Input weight scale (action potential, GiL) {0.02,0.05,0.10,0.20,0.50,0.80}
ESN Input weight scale (pacing stimulus , 0'51) {0.02,0.05,0.10,0.20,0.50,0.80}
Spectral radius® (p) {0.80,0.85,0.90,0.99,1.05,1.15,1.25}
Leaking rate (&) {0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90, 1.00}
Regularizationd (1) {1077,10%,1075,1074,1073,1072}
Connection probability® (pr) {0.01,0.02,0.05,0.10,0.15,0.20}
Number of reservoir hidden units (7,) {60,100,200, 300,400,500}
Resampling voltage threshold? (8) {0.00,0.01,0.02,0.03,0.04 }
Resampling time threshold® (t) {20,30,40,50}
Input weight scale (action potential, 0;1) {0.02,0.05,0.10,0.20,0.50,0.80}
HESN Input weight scale (pacing stimulus , Gl%l) {0.02,0.05,0.10,0.20,0.50,0.80}
Input weight scale (knowledge based model, 0'31) {0.02,0.05,0.10,0.20,0.50,0.80}
Spectral radius® (p) {0.80,0.85,0.90,0.99,1.05,1.15,1.25}
Leaking rate (ct) {0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90, 1.00}
Regularizationd (1) {1077,107°,107,10%,1073,1072}
Connection probability® (pr) {0.01,0.02,0.05,0.10,0.15,0.20}
Layers and cells | {[64,32],[64,16],[64,4],[128, 32],[128,16],[128,4] }
Learning rate (1) {0.001,0.002,0.005,0.010,0.150}
Number of reservoir hidden units (n,) {60,100, 200,300,400,500}
AE-ESN Input weight scale (action potential, 0',%,) {0.02,0.05,0.10,0.20,0.50,0.80}

Spectral radius® (p)
Leaking rate (&)
Regularizationd (1)
Connection probability® (pr)

{0.80,0.85,0.90,0.99,1.05,1.15,1.25}
{0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90, 1.00}
{1077,107°,1073,1074,103,102}
{0.01,0.02,0.05,0.10,0.15,0.20}

? The minimum difference between the voltage values of each two consecutive data points used as the first criterion for resampling the action potential time
series in ESN and HESN methods.

b The maximum time gap (in ms) between each two consecutive data points used for resmapling in ESN and HESN.

¢ The reservoir weight matrix is scaled such that its spectral radius, defined as the largest among the absolute values of the eigenvalues, is equal to the selected

value.

4 The ridge regression regularization factor used for calculation of the readout weights.

¢ The probability of having an edge between each two neurons in the reservoir controlling the sparsity of the reservoir graph.
f The number of LSTM cells in the layers of encoder part. The decoder includes the same values but in reverse order to form a mirrored topology.
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TABLE S2: Hyperparameter values used for the grid search optimization for each prediction method to predict the BR time
series. The selected optimum values are indicated in bold.

Methods Parameters Values
Number of reservoir hidden units (n,-) {60,100,200, 300,400,500}
Resampling voltage threshold?® (6) {0.00,0.01,0.02,0.03,0.04}
Resampling time threshold® () {20,30,40,50}
Input weight scale (action potential, GiL) {0.02,0.05,0.10,0.20,0.50,0.80}
ESN Input weight scale (pacing stimulus , 0'51) {0.02,0.05,0.10,0.20,0.50,0.80}
Spectral radius® (p) {0.80,0.85,0.90,0.99,1.05,1.15,1.25}
Leaking rate () {0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90,1.00}
Regularizationd (1) {107,107°,107%,1074,1073,1072}
Connection probability® (pr) {0.01,0.02,0.05,0.10,0.15,0.20}
Number of reservoir hidden units (7,) {60, 100,200, 300,400,500}
Resampling voltage threshold? (8) {0.00,0.01,0.02,0.03,0.04}
Resampling time threshold® (t) {20,30,40,50}
Input weight scale (action potential, 0;1) {0.02,0.05,0.10,0.20,0.50,0.80}
HESN Input weight scale (pacing stimulus , Gl%l) {0.02,0.05,0.10,0.20,0.50,0.80}
Input weight scale (knowledge based model, 0'31) {0.02,0.05,0.10,0.20,0.50,0.80}
Spectral radius® (p) {0.80,0.85,0.90,0.99,1.05,1.15,1.25}
Leaking rate (ct) {0.20,0.30,0.40,0.50,0.60,0.70, 0.80,0.90, 1.00}
Regularizationd (1) {1077,107°,107,1074,103,1072}
Connection probability® (pr) {0.01,0.02,0.05,0.10,0.15,0.20}
Layers and cells | {[64,32],[64, 16], [64,4],[128,32],[128, 16], [128,4]}
Learning rate (1) {0.001,0.002,0.005,0.010,0.150}
Number of reservoir hidden units (n,) {60,100, 200,300,400,500}
AE-ESN Input weight scale (action potential, 0',%,) {0.02,0.05,0.10,0.20,0.50,0.80}

Spectral radius® (p)
Leaking rate (&)
Regularizationd (1)
Connection probability® (pr)

{0.80,0.85,0.90,0.99,1.05,1.15,1.25}
{0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90, 1.00}
{1077,107°,1073,1074,1073,10"2}
{0.01,0.02,0.05,0.10,0.15,0.20}

? The minimum difference between the voltage values of each two consecutive data points used as the first criterion for resampling the action potential time
series in ESN and HESN methods.

b The maximum time gap (in ms) between each two consecutive data points used for resmapling in ESN and HESN.

¢ The reservoir weight matrix is scaled such that its spectral radius, defined as the largest among the absolute values of the eigenvalues, is equal to the selected

value.

4 The ridge regression regularization factor used for calculation of the readout weights.

¢ The probability of having an edge between each two neurons in the reservoir controlling the sparsity of the reservoir graph.
f The number of LSTM cells in the layers of encoder part. The decoder includes the same values but in reverse order to form a mirrored topology.
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TABLE S3: Hyperparameter values used for the grid search optimization for each prediction method to predict the
experimental time series. The selected optimum values are indicated in bold.

Methods Parameters Values
Number of reservoir hidden units (n,-) {60,100, 200, 300,400,500}
Resampling voltage threshold?® (6) {0.00,0.01,0.02,0.03,0.04 }
Resampling time threshold® () {20,30,40,50}
Input weight scale (action potential, GiL) {0.02,0.05,0.10,0.20,0.50,0.80}
ESN Input weight scale (pacing stimulus , 0'51) {0.02,0.05,0.10,0.20,0.50,0.80}
Spectral radius® (p) {0.80,0.85,0.90,0.99,1.05,1.25,1.50}
Leaking rate (&) {0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90,1.00}
Regularizationd (1) {1077,10%,1075,1074,1073,1072}
Connection probability® (pr) {0.01,0.02,0.05,0.10,0.15,0.20}
Number of reservoir hidden units (7,) {60,100,200, 300,400,500}
Resampling voltage threshold? (8) {0.00,0.01,0.02,0.03,0.04 }
Resampling time threshold® (t) {20,30,40,50}
Input weight scale (action potential, 0;1) {0.02,0.05,0.10,0.20,0.50,0.80}
HESN Input weight scale (pacing stimulus , Gl%l) {0.02,0.05,0.10,0.20,0.50,0.80}
Input weight scale (knowledge based model, 0'31) {0.02,0.05,0.10,0.20,0.50,0.80}
Spectral radius® (p) {0.80,0.85,0.90,0.99,1.05,1.25,1.50}
Leaking rate (ct) {0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90, 1.00}
Regularizationd (1) {1077,107°,10"%,1074,1073,1072}
Connection probability® (pr) {0.01,0.02,0.05,0.10,0.15,0.20}
Layers and cells © {[64,32],]64, 16], [64, 4], [128, 32], [128, 16], [128, 4]}
Learning rate (1) {0.001,0.002,0.005,0.010,0.150}
Number of reservoir hidden units (7,) {60, 100,200, 300,400,500}
AE-ESN Input weight scale (action potential, 0[11) {0.02,0.05,0.10,0.20,0.50,0.80}

Spectral radius® (p)

Leaking rate (&)
Regularizationd (1)
Connection probability ¢ (pr)

{0.80,0.85,0.90,0.99,1.05,1.15,1.25}
{0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90, 1.00}
{1077,107%,107°,1074,1073,102}
{0.01,0.02,0.05,0.10,0.15,0.20}

2 The minimum difference between the voltage values of each two consecutive data points used as the first criterion for resampling the action potential time
series in ESN and HESN methods

b The maximum time gap (in ms) between each two consecutive data points used for resmapling in ESN and HESN

¢ The reservoir weight matrix is scaled such that its spectral radius, defined as the largest among the absolute values of the eigenvalues, is equal to the selected

value.

d The ridge regression regularization factor used for calculation of the readout weights.

¢ The probability of having an edge between each two neurons in the reservoir controlling the sparsity of the reservoir graph.
 The number of LSTM cells in the layers of encoder part. The decoder includes the same values but in reverse order to form a mirrored topology.
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