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Abstract

Graph partitioning is a fundamental algorithmic problem in combinatorics moti-
vated by applications such as clustering and community detection in social networks
as well as theoretical importance in particular in spectral methods and the Unique
Games Conjecture in computational complexity.

The main theme in this problem is the following: Given a graph consisting of a
collection of “loosely connected dense subgraphs”, design an efficient algorithm to
detect, either exactly or approximately, the underlying dense subgraphs. There are
many variations of the problem, ranging from information theoretic possibility of
discovering the communities to efficient algorithms for doing so as well as “local
walk” and distributed models for the algorithmic task.

In this research, a systematic study of the major techniques and discoveries in this
area has been conducted with an emphasis on the methods based on the spectral
graph theory. In the last years, spectral graph partitioning approaches have become
very popular and there has been a growing interest in their applications, mainly on
account of their efficiency and mathematical elegance. Therefore, the main concepts
of the spectral partitioning algorithms are comprehensively discussed in this research
and some novel applications of these methods have been concluded at the end.
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Chapter 1

Introduction

1.1 Motivation and Objectives

In general, graphs are frequently used to model many types of relations and pro-
cesses in science and engineering applications. A wide-range of practical problems
can be represented by graphs. Particularly, in computer science, graphs are employed
to represent computer networks, social networks, data organization, computation
flow, etc.

Accordingly, there exist many applications in which cutting a graph into smaller
pieces is a fundamental requirement. Partitioning large graphs has an important role
in complexity reduction and parallelization in various applications such as scientific
simulation, social networks, and, road networks.

Motivated by such applications, this research aims at investigating the available
graph partitioning techniques to obtain a comprehension of key concepts in this
area. Such an understanding will play an important role in improving the available
algorithms and designing novel strategies for new applications. Pointing out the
key features of each algorithm, such research can also be helpful in development of
functional software tools for real-world applications.

Fundamentally, graph partitioning problems are NP-hard problems and the solu-
tions are typically obtained through heuristics and approximation algorithms. Ac-
cordingly, a wide variety of algorithms have been proposed in literature to provide
practical solutions. The first objective of this project is providing a structured survey
of these algorithms and their applications.

Supported by a strong mathematical background, spectral graph theory provides a
variety of functional methods for graph partitioning. More specifically, spectral par-
titioning algorithms provide solution to partitioning problems by computing eigen-
values and eigenvectors of some matrices associated to the graph. On account of
the great performance and growing interest in these methods, the second aim of this
project is studying the spectral graph partitioning algorithms, in detail.

1



CHAPTER 1. INTRODUCTION

This research mainly focuses on discussing the available algorithms and their ap-
plications; however, proposing new implementation and applications of spectral par-
titioning approaches can be considered as an extension to this research project.

To conduct this research, initially, the application of graph partitioning methods
will be investigated. Then, a systematic survey of these techniques will be pre-
sented. Eventually, the rest of research will be concentrated on spectral partitioning
algorithms and the extensions.

1.2 Graph Partitioning Applications

Graph partitioning has many applications in computer science. To understand the
importance of this methods, some of the prominent applications are briefly described
in this section.

1.2.1 Parallel Processing

Generally, parallel processing is required in massive scientific computations. Parallel
graph computations take advantage of graph partitioning in problems such graph
eigenvalue computations, breadth-first search, and, PageRank and connected com-
ponents. For the distribution of works to processors of a parallel machine, graph
partitioning concepts is implemented to ensure the load balance and minimize the
communication between processors [10].

In this area, two distinct type of partitioning has been introduced: static parti-
tioning and periodic partitioning. Static partitioning is the approach in which graph
partitioning has been applied once in the beginning of the computation. This ap-
proach can only be employed when the problem domain does not change as the
computation proceeds. Periodic partitioning should be employed in scientific com-
puting or visualization with evolving computational domains e.g. Adaptive Mesh
Refinement. In these cases, the graph model may be augmented with additional
nodes and edges to model new additional features [10].

1.2.2 Complex Networks

Most biological, social, and technological networks contain many features with pat-
terns of connection between their elements. These complex networks can be repre-
sented by graphs and introduces numerous further applications of graph partitioning
problems. A common application in this context is to identify groups of similar enti-
ties with specific features. These types of localization can be recognized based on the
principal of finding groups of entities weakly connected to the rest of the network
[13]. Most of the time, such connectivity also represents similarity [63]. Real-life
application of complex networks often leads to optimization problems on weighted
graphs [13].

2



1.2. GRAPH PARTITIONING APPLICATIONS

• Power Grids Power networks can be represented by a complex network graph.
Splitting a power network into self-sufficient divisions is an approach to pre-
vent the propagation of cascading failures in this networks [57]. In this con-
text, the vulnerabilities of the power system will be evaluated by employing
graph partitioning approaches. Especially, spectral graph partitioning is used
in the vulnerability detection by splitting the network into regions with excess
generation and excess load [13].

• Biological Networks Graph representations can be employed for modeling
many complex biological systems, such as protein-protein interactions and
gene co-expression networks. The correspondence graph can be created by
assuming the biological entities, e.g. proteins, as vertices and establishing the
edges according to participation of the entities in some biological processes
[13]. Partitioning and clustering of such networks may have several goals,
such as data reduction obtained by the assumption of the biologically similar-
ity in the clustered nodes [17].

• Social Networks Community detection is one of the most popular topics in
social network science. Graph partitioning methods are often used as first
approximation in this problem [84].

• Geographically Embedded Networks Another application of graph partition-
ing methods in complex networks is in analyzing the spatial network data
which have been increased drastically in the recent years by growing appli-
cation of location-aware devices, such as GPS. In this situation, using graph
partitioning approaches to improve the efficiency of data analyzing algorithms
for spatial data and geographical networks is unavoidable [13].

• Road Networks Graph partitioning can also be employed to improve the per-
formance of route planning algorithms in road networks. For instance, in the
algorithm known as arc-flags, a geometric partitioning approach is used as
preprocessing step to reduce the search space in Dijkstra’s algorithm [13].

1.2.3 Image Processing

In computer vision, image segmentation is the field in which graph partitioning and
clustering methods have been employed, noticeably. The main purpose of image
segmentation is to partition the pixels of an image into specific groups known as
objects. This approach leads to an extreme compressed representation of the im-
age and the computations after segmentation are consequently cheaper. Therefore,
the segmentation execution can be considered as the most demanding in an image
processing procedure [67]. In a graph-based representation of an image each pixel
(or a group of pixels) of the image is related to a node in the graph. Then, two
nodes will be connected through a weighted edge, if some similarity exist between
them. The similarity is usually defined as small geodesic distance which can result
in a mesh-like graph. Moreover, the edge weights represent the difference in the
intensity between the connected nodes [67].

3



CHAPTER 1. INTRODUCTION

1.2.4 VLSI Physical Design

Graph partitioning is widely used in physical design of digital circuit for very large-
scale integration (VLSI) systems [13]. The purpose of the partitioning in this prob-
lems is reducing the complexity of the VLSI design by divide it into smaller com-
ponents. The typical optimization objective in this problem is minimizing the total
weight of connection between subcircuits. In this manner, the graph nodes are cells
which are small units of the circuit, such as gates, and the edges of the graph are the
wires which should be kept minimum [13].

1.2.5 Clustering

Clustering algorithms are a functional tool for exploring data structures and may be
employed in many disciplines. Two prominent clustering approaches can be found
in the literature: kernel methods and spectral methods.

In general, clustering methods have been employed in many contexts such as data
mining, image segmentation and pattern classification [73]. The aim of clustering
methods is to group patterns on the basis of similarity criteria. Accordingly, clus-
ters are sets of similar patterns and pattern recognition is the most crucial aspect
in clustering [63]. Clustering performance can be improved by a good choice of
representation of patterns.

From another practical point of view, the clustering techniques can be divided into
two main categories: hierarchical and partitioning.

In hierarchical clustering techniques [32], a structure can be obtained that it can
recursively be divided into substructures. The ultimate hierarchical structure of clus-
ters is called dendrogram [32].

Partitioning clustering approaches are often based on the optimizing an associated
objective function and try to obtain a single partition of data. The result is emerging
hypersurfaces among clusters [45]. For instance, Figure 1.1 exhibits two potential
nonlinear clusters.

Figure 1.1: A data set composed of two rings of points [32]

It has been demonstrated that standard partitioning methods are not able to sep-
arate this data set into two rings by using two centroids. This problem could be

4



1.2. GRAPH PARTITIONING APPLICATIONS

solved by employing many centroids which provides a complex description for a sim-
ple data set [32]. Accordingly, several modifications and new approach have been
implemented which is resulted in two prominent families of clustering algorithms:
kernel and spectral clustering methods [32, 73].

The kernel clustering methods is including a wide range of algorithms such as K-
means, fuzzy, c-means, and, SOM. Employing the kernels in this methods allows to
map implicitly data to a high dimensional space called feature space [32].

Spectral clustering method is on the basis of concepts in spectral graph theory. In
this approach, an associated weighted graph will be constructed corresponding to
the initial data set in which each node represents a pattern and the similarity among
each pair of pattern is shown by a weighted edge between them. In this manner,
the clustering problem transforms to a graph partitioning problem. Therefore, the
spectral graph theory tools can be implemented to solve clustering problems [35].

K-means clustering method is one of the most functional and well-known kernel
clustering methods. It is actually a method of vector equalization which is popular
for cluster analysis in data mining. K-means clustering aims at partition n observa-
tions into k clusters in which each observation belongs to the cluster with the nearest
mean serving as prototype of the cluster. This problem is computationally difficult
(NP-hard); however, there are efficient heuristic algorithms that are commonly em-
ployed and converge quickly to local optimum [35, 45].

1.2.6 Community Detection

A well-known family of problems employing graph partitioning methods is commu-
nity detection in complex networks. Many real-world networks essentially organized
due to a community structure [17]. Therefore, many research has been devoted
to discover and highlight these structure of networks. As it described in section
1.2.2, many real-world complex networks can be represented by graphs. On ac-
count of complex features found in the this complex networks, the corresponding
graph model can be intricate including various features. Thus, various algorithms
have been proposed in the literature to detect the communities and each of them is
focusing on specific properties of this networks.

A community can be considered as a set of entities so as each entity is closer to
the other ones within the community than to the entities outside it. In other words,
communities are groups of entities sharing some comon properties [66, 17].

According to the clustering concepts presented in section 1.2.5, community detec-
tion is similar to the clustering problems in data mining context [17]. In clustering
problems large sets of data will be partitioned into clusters which are homogeneous
groups. By introducing the concept of community and common entities, the commu-
nity discovery can be viewed as a clustering problem in graphs so that an unsuper-
vised classification of graph nodes is the objective. Specifically, community detection
is the most data mining application on social networks [11].
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CHAPTER 1. INTRODUCTION

1.3 Report Outline

Following the objective of the research, the remainder of this report is organized as
follows:

• Chapter 2 provides the essential mathematical background required in this
research. In particular, a review of graph theory and linear algebra will be
presented in this chapter.

• Chapter 3 provides a general overview of graph partitioning methods and a
comprehensive classification of available approaches will be presented in this
chapter.

• Chapter 4 discusses the spectral graph partitioning methods in detail. In this
chapter all the significant basis of spectral graph theory will be presented. Be-
sides, some related topics of spectral methods and theorems will be studied, as
well.

• Chapter 5 briefly introduces the spectral graph clustering algorithms and ex-
plains the relation between graph clustering and graph partitioning methods.

• Chapter 6 proposed a novel application of spectral partitioning concepts in
graph-constrained group testing. More specifically, a state-of-the-art algorithm
for partitioning a graph into expander subgraphs and the possibility of its ap-
plication in graph-constrained group testing problems is discussed.

• Chapter 7 introduces an addition to this project which is a MATLAB toolbox
developed alongside this research to improve the comprehension of spectral
graph partitioning concepts.

• Chapter 8 points out the achievements of this research and also provides some
suggestions for future works.
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Chapter 2

Preliminaries

2.1 Overview

In this chapter the necessary terminology and mathematical background required
for the rest of the report is provided. This chapter includes a review of graph theory
in which the basic terminology of the graph theory has been discussed. Additionally,
even though familiarity with the basic concepts of linear algebra is assumed, the key
concepts required to understand spectral graph theory is presented at the second
part of this chapter.

2.2 A Review of Graph Theory

In a general view, graph is a mathematical structure used to model relations between
objects. The formal and technical definitions in the graph theory are as follows
[93, 73]:

2.2.1 Basic Concepts

• Graph: In the graph theory, a graphG is considered as a pair of setsG = (V,E),
where V is a non empty set of nodes (or vertices) and E is the set of edges. In
an undirected graph, each edge can be defined by an unordered pair v, w. In a
directed graph, edges are ordered pairs.

• Graph Order: The number of the vertices n = |V | is defined as the order of the
graph.

• Graph Size: The number of edges m = |E| is the size of the graph.

• Weighted Graph: In a weighted graph, a weight is assigned to each edge by
defining a weight function w : E → R.
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• Planar Graph: A graph is planar if it can be drawn in a plane without any of
the edge crossing.

• Graph Density: The density of a graph has been defined as the ratio of the
number of edges per the maximum possible,

Graph density =
m

( n
2 )

(2.1)

• Neighborhood: Vertex v is a neighbor of u, if v and u are endpoints of an edge
in the graph. The set of neighbors for a given vertex v is denoted by Γ(v).

• Node Degree: In an undirected unweighted graph, the number of the adjacent
edges of a node is considered as its degree and denoted by d. However, in an
undirected weighted graph, the degree of a node can also be defined as the
sum of the weights of its adjacent edges.

– A vertex of degree 0 is called isolated vertex

– Minimum Degree of a graph G, denoted by ∆(G), is the minimum degree
among the vertices of G.

– Maximum Degree of a graph G, denoted by δ(G), is the maximum degree
among the vertices of G.

• Regular Graph: A graph is regular if all the vertices have the same degree.
Accordingly, if the degree of all vertices is r, the graph is considered as a r-
regular graph.

2.2.2 Subgraphs

• Subgraph: A graph H is called a subgraph of a graph G, written H ⊂ G, if
V (H) ⊂ V (G) and E(H) ⊂ E(G).

• Spanning Subgraph: It is a subgraph with the same vertex set as the original
graph, i.e. V (H) = V (G).

2.2.3 Walk, Path, Trail, Circuit, and Circle

• Walk: A u−v walk is defined as a sequence of vertices in a graph G, beginning
with u and ending with v. If u = v, then the walk is closed, otherwise, it is
known as an open walk.

– The number of edges in a walk is called the length of the walk.

– A walk of length 0 is known as a trivial walk.

• Path: A path is defined as a walk in which no vertex is repeated more than
once. In other word, a path in a graph is a sequence of vertices in which there
exists an edge connecting every two consecutive vertices.
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• Trail: A walk in which each edge is visited no more than once.

• Circuit: A closed trail of length ≥ 3 is known as a circuit.

• Cycle: A circuit in which no vertex is repeated, except for the first and last.

2.2.4 Connected Graphs

• Connected Graph: A graph is recognized as a connected graph, if there is a
path between every pair of vertices.

• Connected Component: A connected component is a subgraph with a path
connecting every pair of vertices.

• Distance: The distance between two vertices, u and v denoted by d(u, v), is
defined as the smallest length of any u− v path in a graph G.

• Diameter: The greatest distance between any two vertices of a connected
graph G is defined as the diameter of the graph and denoted by diam(G).

2.2.5 Specific Classes of Graphs

• Complete Graph: A graph is complete, if there is an edge connecting any two
nodes of a graph. A complete graph of order n is denoted by Kn and it is of
size ( n

2 ). Therefore, according to Equation 2.1, the density of a complete graph
is one.

• Bipartite Graph: A graph G partitioned into two subset of vertices U and W ,
is called partite sets, if every edge of G joins a vertex of U to a vertex of W .
Figure 2.1 depicts a bipartite graph.

Figure 2.1: A bipartite graph [51]

• Complete Bipartite Graph: A bipartite graph with two subset of vertices U
and W , is called complete bipartite, if there is an edge between every vertex of
U and W .

• k-partite Graph: A graph G is a k-partite graph, when V (G) is partitioned into
k subsets, such that (u, v) is an edge of G if u and v belong to different partite
sets.

9
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2.2.6 Graph Matrices

• Adjacency Matrix: The adjacency matrix A of a given graph G of order n is
an n× n matrix A = [aij], where aij = 1, if there is an edge connecting node vi
and vj and 0, otherwise.

• Weight Matrix: The edge weights are represented by a weight matrix W =
[wij], where wij is the edge weight between vertices vi and vj.

2.3 A Review of Linear Algebra

In this section, some concepts of linear algebra required in spectral graph theory and
particularly spectral partitioning methods is discussed [80].

2.3.1 Basic Definitions

Consider A ∈ Rn×n as an n× n matrix and x ∈ Rn as a column vector. In this case,

• The matrix A is identified as linear transformation from n-dim vectors to n-dim
vectors.

• A set of vectors v1,v2, ...,vk are linearly independent, if c1v1+...ckvk = 0 implies
c1 = c2 = ... = ck = 0; otherwise, they are linearly dependent.

• The null space or the kernel of a matrix A is defined as nullspace(A) = {x ∈ Rn|Ax = 0}
and null(A) denotes its dimension.

• The range of a matrix A is defined as range(A) = {Ax|x ∈ Rn} and rank(A)
denotes its dimension.

• Note rank(A)+null(A)=n.

• Note rank(A) = maximum number of linearly independent column of A.

2.3.2 Eigenvalues and Eigenvectors

Let A ∈ Cn×n be a square matrix, λ ∈ C is a scaler and v ∈ Cn − {0} is a non-zero
vector. In this case, λ is called an eigenvalue of A if

Av = λv (2.2)

and v is known as the corresponding eigenvector. Equation (2.2) is equivalence to
(A− λI)v = 0, where I is the identity matrix. Thus, for a non-zero vector v can be
inferred

det(A− λI) = 0 (2.3)
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By the definition of determinant, det(A−λI) is a polynomial of degree n in λ that is
called characteristic polynomial of A and, over the complex numbers, has exactly n
solutions. Each of the roots is an eigenvalue and any vector in nullspace(A− λI) is
an eigenvector. The characteristic polynomial can be solved by Gaussian elimination
or interpolation and any root of it is an eigenvalue.

Geometrically, an eigenvector is a direction that is fixed by the linear transforma-
tion. It should be noted that all matrices have not real eigenvalues, but it can be
demonstrated that real symmetric matrices have real eigenvalues. Therefore, the
eigenvalues of the adjacency matrix of an undirected graph are all real.

2.3.3 Orthogonality

The next important and useful concept in spectral theorem is the orthogonality.
Given two n-dimensional vectors u = (u1, u2, ..., un)

T and v = (v1, v2, ..., vn)
T , the

inner product of u and v is defined as

⟨u,v⟩ =
n∑

i=1

uivi (2.4)

Besides, the length of a vector u which is also known as the norm of u is defined as

∥ u ∥=
√

⟨u,u⟩ (2.5)

By these definitions, two vectors u and v are orthogonal (or perpendicular) if and
only if ⟨u,v⟩ = 0. Accordingly,

• A set S of vectors are called orthogonal, if for any distinct u,v ∈ S, u and v
are orthogonal.

• A set S of vectors are called orthonormal, if S is orthogonal and for any u ∈
S, ∥ u ∥= 1

• A set S of vectors are called a basis for a vector space V , if S is linearly inde-
pendent and every vector of V is a linear combination of the vectors in S.

2.3.4 Spectral Theorem for Real Symmetric Matrices

In this section, some of the functional concepts in spectral theory is discussed. The
proof of these theorems are available in literature and has not been discussed here.

Theorem 1
If A is a real symmetric n × n matrix, then, there is an orthonormal basis of Rn

consisting of eigenvectors of A, and the corresponding eigenvalues are real numbers.
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Eigenspace

Let λ be an eigenvalue of a matrix A. Then the eigenspace of λ is defined as
nullspace(A − λI). Thus, for a real symmetric matrix A, it can be demonstrated
that null(A− λI) = multiplicity of λ.

Eigen-decomposition

Let {v1,v2, ...,vn} be a basis of orthonormal eigenvectors. Then any vector x can
be written in the form of c1v1 + c2v2 + ...+ cnvn

2.3.5 Graph Spectrum

The adjacency matrix of a graph has been defined in Section 2.2.6. According to
the spectral theorem, the adjacency matrix has an orthonormal basis of eigenvectors
with real eigenvalues.

In the following, the spectrum of some specific graphs discussed in Section 2.2.5
is presented.

2.3.6 Complete Graph

If G is a complete graph Kn, then A(G) = J − I, where J denotes the all-one
matrix. Obviously, any vector is an eigenvector of I with eigenvalue 1. Therefore,
the eigenvalues of A will be one less than that of J . Since J is of rank 1, there
are n − 1 eigenvalues of 0. Moreover, the all-one vector is an eigenvalue of J with
eigenvalue n, Therefore, A has one eigenvalue of n− 1, and n− 1 eigenvalue of −1.

2.3.7 Bipartite Graph

A bipartite graph can also be characterized by the spectrum. In is claimed that

1. If G is a bipartite graph and λ is an eigenvalue of A(G) with multiplicity k,
then −λ is an eigenvalue of A(G) with multiplicity k. This relation reveals that
the spectrum of a bipartite graph is symmetric around the origin. The converse
is also true which is presented in the following statements.

2. If the nonzero eigenvalues of the adjacency matrix of a graph, A(G), occurs in
pairs, then G is bipartite.

Both of these claims are proved in [80]. A nice result of them is that it can be
generalized to show the following:

λn is close to −λ1 if and only ifG is close to a bipartite graph (i.e. a large max-cut).
This result leads to a nontrivial approximation to the max-cut problem explained in
Section 4.10.2.
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2.3.8 Positive Semidefinite Matrix

A real symmetric matrix M is a positive semidefinite matrix, if xTMx ≥ 0 for every
vector x. It is demonstrated that a real symmetric matrix M is positive semidefinite
if and only if all eigenvalues are non-negative if and only if M = BBT for some B.

It is worth mentioning that the Laplacian matrix can be written as BBT . Thus, it is
a positive semidefinite matrix and all the eigenvalues of this matrix are non-negative.
Therefore, 0 is the smallest eigenvalue of Laplacian matrix.

2.3.9 Connectedness

There are two important corollaries concerning connectedness in algebraic graph
theory [36, 80]:

1. A graph is connected if and only if 0 is an eigenvalue of L(G) with multiplicity
1. A practical thing about this characterization is that it can be generalized in
the following way:

λ1 and λ2 are very close if and only if the graph is close to be disconnected.
As a very useful result, this provides a nontrivial approximation to the sparsest
cut problem (See Section 4.9).

2. The Laplacian matrix L(G) has 0 as its eigenvalue with multiplicity k if and
only if the graph G has k connected components (see Section 4.12).
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Chapter 3

Graph Partitioning Approaches

3.1 Overview

In this chapter the definition of graph partitioning problem is featured. Then, fol-
lowing the objective of this research, a structured overview of available graph parti-
tioning algorithms is presented and the key ideas of each technique has been briefly
described. To achieve this purpose, both global and heuristic methods are discussed,
and the multilevel graph partitioning method is thoroughly studied at the end of this
chapter.

3.2 Graph Partitioning Problem

3.2.1 Definition

Graph partitioning problem (GPP) is defined on data represented in the form of a
graph G = (V,E), where V is the set of vertices and E is the set of edges, such that
it is possible to partition G into smaller components with specific properties.

In a general definition of the graph partitioning problems, given a graph G =
(V,E,WV ,WE), where WV and WE are vertices weights and edge weights, respec-
tively, the objective is choosing a partition V = V1 ∪ V2 ∪ ... ∪ VP such that

• The sum of the vertex weights in each Ni is distributed evenly (load balance)

• The sum of all edge weights of edges connecting all different partitions is min-
imized (e.g. decreasing parallel overhead in parallel computations)

In a real-world example, if V is considered as tasks, then WV is task costs and the
work load WE(j, k) is sent by task j to task k. In this way, graph partitioning problem
actually means dividing works evenly and minimizing the required communications
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[63]. One of the fundamental case of graph partitioning problems is graph bisection
which is dividing a given graph into two parts [80]. This family of algorithms can be
employed for complete graph partitioning by implementing recursion approaches.

3.2.2 Problem Complexity

Generally, graph partitioning problems are categorized as NP-hard problems [13].
In computational complexity theory, NP-hardness is a class of problems which are
at least as hard as the hardest problems in NP. NP stands for Non-Deterministic
Polynomial time which is regarded as the set of all decision problems for which
there exist some verifiable proofs in polynomial time by a non-deterministic Turing
machine to prove that a given solution is actually a solution [89].

On account of the hardness nature of graph partitioning problems, most of the GP
algorithms are based on the heuristic approaches. In the following, a comprehensive
classification of the available GP algorithms has been discussed.

3.3 Global Algorithms

One of the main and fundamental methods in graph partitioning is the global al-
gorithms which work on the entire graph and compute a solution directly. These
algorithms are usually computationally expensive; therefore, they usually employed
for smaller graphs and may only be restricted to bipartitioning problems, although
they can be generalized to k-partitioning problems by implementing recursion ap-
proaches. They also can be employed as subroutines in some other complex algo-
rithms such as multilevel approaches [13].

3.3.1 Exact Algorithms

There exists a large amount of exact methods solving graph partitioning problems
optimally. Most of these methods dedicated to the bipartitioning problems and some
others solve the general partitioning problems. Most of these algorithms are based
on branch-and-bound approach [13, 53].

Taking this approach, bounds can be obtained by employing different methods,
such as semi-definite programming, linear programming, etc. Depending on the
method used, two different situation may be happened. In one possible scenario, the
bounds are very good resulted in small branch-and-bound trees but hard to compute.
In the second possible scenario, bounds are weaker which lead to larger trees and
faster computation.

It should be noted that this approach can only be employed in very small problems
by accepting very large running times. Furthermore, the experimental evaluation of
this method only has been conducted for less than 4 block numbers. Besides, the
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methods suggested for bipartitioning problems can solve the problems in a moderate
running time only if the bisection width of graph is small [18].

3.3.2 Spectral Partitioning

One of the most first and most important methods to partition a graph is spectral
bisection. This methods have been employed by Donath and Hoffman [24, 23] and
Fiedler [31]. In this method, the information required in partitioning procedure is
typically obtained by computing the eigenvalues and eigenvectors of the Laplacian
matrix L of the graph. The spectral partitioning approaches will comprehensively
be discussed in the next chapter.

3.3.3 Graph Growing

Graph growing is a simple approach for obtaining a bisection of a graph. Most of the
algorithms implementing this approach are based on breadth-first search (BFS). In
this methods, the procedure is started from a random node v and the nodes traversed
by a BFS will be assigned to the first block, V1. The search will be stopped after half
of the original node weights are assigned to this block and the remaining nodes,
V − V 1, will be assigned to the second block, V2.

A local search algorithm can be employed to improve the resulted partition. Fur-
thermore, multiple restarts of the algorithm can be helpful in obtaining a good solu-
tion. Another effective improvement is trying to find a good starting node by choos-
ing a node which has maximal distance from a random seed node [4]. Some of this
algorithms always add the node to the block that results in the smallest increase in
the cut [47, 13].

3.3.4 Flows

In this approach, the max-flow min-cut theorem [33] has been employed for bisect-
ing a graph by computing a maximum flow and then consequently a minimum cut
between node sets. The drawback of this approach is ignorance of the balance during
the partitioning procedure. Therefore, it is not clear how to apply this approach to
the balanced graph partitioning problems. But, it can still be employed to partition
random regular graphs with small bisection width [13, 12].

The maximum flow approaches are also can be used as a subroutine for improving
the partitioning procedure or coarsening in the multilevel framework. Furthermore,
flow computations can be employed when the quality of partition is measured by
expansion or conductance [54, 7].
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3.3.5 Geometric Partitioning

When the coordinates of graph nodes are available, geometric partitioning approaches
can be employed. These methods are particularly functional in finite element models
and other geometrically-defined graphs. In such graphs, blocks with small cut are
considered as geometrically compact regions. This approach has been implemented
in different schemes:

• Recursive Coordinate Bisection (RCB): In this method, in each step of recur-
sions, the graph nodes are projected onto the coordinate axis with the longest
expansion of the domain and the median of their projections is then utilized
to bisect nodes [78]. The bisection plane is orthogonal to the coordinate axis
which can provide large separators for partitioning meshes with skewed di-
mensions [78, 13].

• Inertial Partitioning: This method can be considered as an improvement to
RCB by choosing the bisecting plane orthogonal to a plane L which minimizes
the moments of inertia of nodes [28]. In this way, the chosen projection plane
L minimizes the sum of the squared distances of all nodes which consequently
leads to an improvement in the worst case performance [13].

• Random Sphere Algorithm: This algorithm generalizes the RBC algorithm
by stereographically projecting the d-dimensional nodes to a random (d + 1)-
dimensional sphere bisected by a plane through its center point [37]. For
instance, Figure 3.2 demonstrates the projected points of a given finite element
mesh illustrated in Figure 3.1.

Figure 3.1: The input finite element mesh (left), the mesh points (right) [37]

This method performs well for well-behaved graphs, such as planar graphs and
k-nearest neighbor graphs [13].
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Figure 3.2: Projected mesh points onto a sphere [37]

• Space-Filling Curves: This type of geometry-based partitioning algorithms
reduces the d-dimensional problem to the one-dimensional case. Fundamen-
tally, space-filling curves define a bijective mapping from V to {1, ..., |V |}. By
implementing this mapping, nodes locality is preserved and the partition will
computationally be cheaper than RCB method [44].

• Multilevel Graph Drawing Algorithm: Embedding arbitrary graphs into the
coordinate space is an approach to demonstrate the graph information in the
geometric form. This approach has been implemented by multilevel graph
drawing algorithm [52].

3.3.6 Stream Graph Partitioning

One of the most recent research area in big data processing is the streaming data
models [13]. In such models, the data arrives in streams and the processing needs to
be done by using less space than the overall input size. Streaming graph partitioning
(SGP) algorithms are extremely suitable for these problems. SGP algorithms are
even faster than multilevel algorithms but give lower solution quality. They can also
be implemented in dynamic networks where fast repartitioning methods are greatly
needed, if a good initial solution is supplied by a strong static data algorithm [81].

3.4 Improved Heuristic Methods

The majority of the graph partitioning algorithms have been more efficient by iter-
atively improving starting solutions [13]. Some of these improved approaches are
discussed in this section.
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3.4.1 Node-swapping Local Search

Local search approach is a simple way for optimization in which a solution will
iteratively be changed by choosing a new node from a neighborhood. Different
techniques can be distinguished by their definition of the neighborhood and their
selection strategies [13].

Kernighan and Lin [49] were probably the first to present a local search method for
graph partitioning problems. In their method, the selection strategy aims at finding
the swap of node assignments which leads to the largest decrease in the total cut
size. Decreasing in total cut size can also be negative. An iteration comes to the end
when all nodes have been moved in this way. Then, the solution will be reset to the
best solution obtained in this iteration. Finally, the termination will happen when
the last iteration has no improvement.

The most important downside of the KL algorithm is its expensive asymptotic
running time. The first implementation of the KL method assumed to take time
O (n2 log n) which can be improved toO (mmax (log n,∆)), where ∆ is the maximum
degree of the graph [26]. Fiduccia and Mattheyses [29] improved this method by de-
signing and implementing proper data structures which leads to an O(m) asymptotic
running time. This modified method is known as KL/FM local search algorithm.

The KL/FM method was further improved by only allowing nodes to move and
stopping a round when the edge cut does not decrease after moving x nodes [48].
In this approach the quality can be improved by random tie breaking and running
additional rounds even when no improvements have been found [13].

There exists a highly localized version of KL/FM algorithm proposed by Osipov and
Sanders [65] in which the search spreads from a single boundary node. Moreover,
a stochastic model of the search is implemented to predict that whether further
improvement can be obtained or the the search should be terminated. In this way,
the method will have a better chance to climb out of local minimums and find better
cuts for the GP solvers KaSPar [65] and KaHIP [70].

Another possible approach is moving just a single node at a time which is allowing
flexible tradeoffs between reducing the cut or improving balance [43]

Furthermore, defining a more general neighborhood relation for bipartitioning
problems, Diekmann et al. [19, 62] introduce a new algorithm in which whole set
of the nodes are exchanged between the blocks instead of moving single nodes. This
approach can improve the cut and the quality of the solution is often better than
most of the other methods, while its running time is almost equal to the KL/FM
algorithm [62]. Algorithm 1 demonstrates the main procedure of this approach.
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Algorithm 1: The main algorithm of Improved Bisection [19]
Data: The given graph G = (V,E)
Result: graph partitions

1 initialization;
2 limit = cutsize/2;
3 while limit ̸= 0 do
4 search for k-helpful set S with k ≥ limit ;
5 if no k-helpful set S with k ≥ limit found then
6 if any k-helpful set S with k > 0 found then
7 S = set with highest helpfulness found;
8 limit = H(S);
9 else

10 S = 0 ;
11 limit = 0;
12 end
13 end
14 if S ̸= 0 then
15 move S to the other side ;
16 search for a balancing set S̄ of S ;
17 if successful then
18 move S̄ to the other side ;
19 limit = limit× 2 ;
20 else
21 move S back to its original position ;
22 limit = ⌊limit/2⌋ ;
23 end
24 end
25 end

where the k-helpful set is defined as the set of nodes that improves the cut size by
k and the balancing set is the set increases the cut size by not more than k−1 edges.

3.4.2 Extension to k-way Local Search

For a variety of applications explained in Section 1.2, such as parallel processing and
VLSI design, the vertices of a graph are needed to be partitioned into p > 2 subsets.
These problem are known as p-way partitioning problems. The most commonly used
p-way partitioning method is recursive bisection in which a graph is firstly divided
into two partitions by an efficient bisection algorithm. Then, the subgraphs will be
divided, recursively [79]. The scheme of this approach is illustrated in Algorithm 2.
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Algorithm 2: Recursive Bisection Scheme [79]
Data: The given graph G = (V,E) and an integer p, K = n/p
Result: a p-way partition of G

1 Procedure Recursive Bisection Scheme(G,p)
2 apply BISECTION to find a bisection GL and GR of G ;
3 if |GL| > K then
4 Recursive Bisection Scheme(GL,p/2) ;
5 Recursive Bisection Scheme(GR,p/2) ;
6 end
7 end
8 return the subgraphs G1, ..., Gp ;

In the recursive bisection algorithms, lacking of global knowledge may lead to
creating partitions that are very far away from the optimal solution [79]. There-
fore, designing and implementing k-way local search algorithms is a requirement.
The KL/FM algorithm can be extended to a local search algorithm for k-partitioning
problem.

One of the extensions of the KL/FM algorithm to k-way local search is using k(k−
1) priority queues so that each type of move (source block, target block) uses one of
them. In the case of single movement, the node maximizing the gain will be chosen.

In some further improvements, a k-way version of the KL/FM algorithm that runs
in linear time O(m) [48]. In this algorithm, a single global priority queue is used for
all types of moves in which the priority is determined by the maximum local gain
which is the maximum reduction in the cut when the node has been moved to one
of the neighbour blocks. In this way, the selected movement leads to the maximum
improvement in the objective function and maintaining or improving the balance
constraint.

The main approach in the most of the current local search algorithms is exchang-
ing nodes between the blocks of the partition in order to decrease the cut size and
maintain balance. One of the improvement to this approach proposed by Sanders
and Schulz [72, 71] in which a combination of multiple local search method has
been employed to relax the balance constraint for node movements but maintain
it, globally. In their approach, the combination problem to find negative cycles in a
graph is reduced by employing some efficient algorithms.

3.4.3 Tabu Search

The tabu search method can be implemented to obtain a k-way local search algo-
rithm [38, 39] which has been applied in many graph partitioning problems. The
main approach implemented in most of these algorithms is as follows [34]:
In comparison to the traditional KL/FM method in which a node is exactly moved
once per each iteration, in this approach, some specific types of moves may be ex-
cluded for a number of iterations. This number of iterations depends on an aperiodic
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function f and the current iteration i. Accordingly, in each iteration of this algo-
rithm, a non-excluded node with the highest gain will be excluded. If the movement
of node v in block A is denoted by (v,A) and it is excluded for f(i) iterations after
the movement to the block with the highest gain, then the node cannot be put back
to block A for f(i) iterations.

3.4.4 Flow Based Improvement

Flow-based graph partitioning method has been explained in Section 3.3.4. In this
section a max-flow min-cut based technique will be discussed proposed by Sanders
and Schulz [70, 71] to improve the edge cut of a bipartitioning problem and gener-
alize it to k-partitioning algorithm.

In this algorithm, an s− t flow problem is constructed by growing an area around
the given boundary nodes/cut edges. In this area, each s−t cut is related to a feasible
bipartition of the given graph (a bipartition fulfills the balance constraint).Then, a
max-flow min-cut algorithm can be employed to find a min-cut in this area which is
a nondecreased cut between the blocks.

The algorithm can be improved by applying the method iteratively, running search-
ing procedure in a larger areas to find more feasible cuts, or employing a heuristic
approach obtain a better balanced minimum cut [13].

3.4.5 Bubble Framework

The bubble framework algorithms [20] are an extension to the graph growing meth-
ods explained in Section 3.3.3. Bubble framework is actually an iterative procedure
for partitioning a graph into k > 2 well-shaped blocks. The good geometric block
shapes can be important in many applications, such as convergence rate of some
iterative linear solvers.

In this procedure, at first, k seed nodes distributed evenly over the graph will
be selected. Furthermore, an iterative improvement will be applied in the second
and the third step. Then, starting from the selected k seed nodes, k breadth first
searches will be run to grow the blocks, as it explained Section 3.3.3, except that
the the BFS are implemented such that the current node is assigned to the smallest
block. Afterwards, local search algorithms are used to balance the load of the blocks
and to refine the cut of the current partition. Finally, at the end of each iteration,
new seed nodes will be computed for the next round. In this step, the new center of
a block is the node that minimizes the sum of the distances to all other nodes in the
block,

The second and the third step of the algorithm will be iterated till the seed nodes
stop changing or no improvement happens for more than 10 iterations. This algo-
rithm is computationally expensive and its complexity is O(km). Figure 3.3 illus-
trates the three steps of the algorithm.
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Figure 3.3: The three steps of the Bubble framework [13]

In this figure, the black nodes indicate the seed nodes. In the second step, the
BFS procedures has been performed around the seed nodes and a partition has been
found. In the third step, new seed nodes are found. Algorithm 3 demonstrates the
flowchart of the Bubble framework [20].

Algorithm 3: The Bubble algorithm [20]
Data: G(V,E)
Result: graphpartitions

1 Procedure Bubble GP
2 perform BFS from an element v of minimal degree;
3 take an element with furthest distance to v as seed of part 1;
4 for i = 2 to P do
5 perform BFS from seed 1, ..., i− 1, simultaneously;
6 take an element with furthest as seed of part i;
7 end
8 repeat
9 grow parts from seeds in BFS manner;

10 calculate centers of parts and assign them as new seeds;
11 until (the seeds do not change OR the aspect ratio (AR) of subdomain did

not improve for 10 iterations);
12 end

The explained algorithm has been improved by using distance measures to reflect
the graph structure [61, 74]. For instance, diffusion has been applied as growing
mechanism around the initial seeds and the method has been then generalized to be
applicable for weighted graphs [62]. Some of the diffusion schemes will be discussed
in Section 3.4.6.

3.4.6 Random Walks and Diffusion

A random walk on a graph is a procedure starting on a node v and then the next
node will randomly be chosen to visit from the set of neighbours based on transi-
tion possibilities. Transition probabilities are actually indicates the importance of an
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edge. Random walk is an iterative procedure which can be repeated an arbitrary
number of times. Transition probabilities are obtained by transition matrix P whose
entries are the transition probabilities of the corresponding edges [60].

Diffusion, in general, is a natural process describing a substance’s desire to dis-
tribute evenly in space. Applying diffusion on a graph is actually implementing an
iterative procedure in which splittable entities are exchanged between neighbours,
usually until all node have the same amount. Therefore, diffusion can be considered
as a special version of random walk.

Both of the random walk and the diffusion algorithm can be employed to identify
dense graph regions. Once a random walk reaches to a dense region, it will likely
stay there for a longer time, before leaving it through one of the relatively few out-
going edges. Pt

u,v denotes the probability of a random walk that starts in node u to
be located on v after t steps. The relative size of this parameter can be considered as
a measure for assigning u and v to the same or different clusters [73].

3.5 Multilevel Graph Partitioning

Multilevel graph partitioning approach is one of the most successful heuristic meth-
ods in graph partitioning problems [13]. This approach consists of three main
phases: coarsening (which is also known as contraction), initial partitioning, and
uncoarsening.

The coarsening phase is actually responsible for approximating the original prob-
lem and providing a graph with fewer degrees of freedom. In multilevel graph par-
titioning solvers the coarsening is obtained by constructing a hierarchical coarsened
graphs so that the cuts in the coarse graphs indicate the cuts on the original fine
graph. The proper hierarchy can be created through a variety of methods. Most of
these methods contracts nodes on the fine level. The contracting U ⊂ V is essentially
replacing the set of node U with a single node u so as

c(u) =
∑
w∈U

c(w) (3.1)

Contraction may also produce parallel edges which are replaced by a single edge. In
this case, the weight of the new edge is the summation of the parallel edges. There-
fore, the balanced partitions on the coarse level represent the balanced partitions
on the fine level with the same cut values [13]. The coarsening phase has been
demonstrated in Figure 3.4.

The coarsening procedure is usually terminated when the graph becomes suffi-
ciently small to be initially partitioned by means of a proper and usually expensive
algorithm. In this step, any of the fundamental algorithms discussed in Section
3.3 can be employed to achieve the initial partitioning. It should be noticed that im-
plementing expensive methods and consequently obtaining high quality partitions at
the coarsest level does not guarantee obtaining the high quality results in at the finest
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Figure 3.4: The multilevel graph partitioning approach [13]

level. Therefore, some graph partitioning solvers prefer to apply several faster di-
verse algorithms with random tie breaking instead of running only expensive global
optimization procedures [13].

The next step, uncoarsening, includes two stages. The first one is mapping the
solution achieved at the coarse level to the fine level graph. The second step is
improving the result which is typically obtained by applying one of the methods ex-
plained in the Section 3.4. These two abovementioned stages will be carried on until
the finest hierarchy level, which is the original inputted graph, has been processed.
Each of the coarsening-uncoarsening process is also called V-cycle (Figure 3.4).

There exist some reasons which explains the great performance of the multilevel
graph partitioning approach [13]:

• Due to coarsening step, a lot of procedure can be executed on nodes without
huge increasing in the overall execution time.

• Any changes on a single node at the coarse level is actually corresponds to a
big change in the final solution. Therefore, there is a better chance to find an
improvement in the coarse level which is not easy to find in the finest level

• The local improvements in the finest level are faster than a single level ap-
proach because they have been already started from a good solution obtained
in the coarse level.

• The iterative execution of multilevel partitioning algorithms, such as chains
of V-cycle, is a privilege of this approach since provides an opportunity to im-
prove the quality of coarsening by using the previous iteration’s solution. Fur-
thermore, the inter-hierarchical coarsening-uncoarsening iteration can also be
improved in such way that more processes will be executed ate the coarser
levels. An instance of this approach is proposed as W-cycle and F-cycle [70]
which has been simply demonstrated in Figure 3.4.

• Multilevel graph partitioning approaches are intrinsically parallelization-schemes
friendly since in the multilevel approaches, only the local processing at possibly
different coarsening levels construct the global solution.
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3.5.1 Coarsening Approaches

Contracting a Single Edge

A fundamental coarsening approach is to contract only two nodes connected by an
edge. This approach leads to an almost n levels hierarchy, therefore, it is called n-
level graph partitioning [65]. To obtain high quality partitions, a k-way scheme of
highly localized local search methods, such as the approaches explained in Section
3.4.1, can be successfully applied.

Contracting a Matching

Contracting large matchings is the most widely used coarsening strategy. In this
approach, the contracted sets are actually pairs of nodes which are connected by
some non-intersected edges. This scheme leads to a geometrically decreasing size of
the graph and a logarithmic number of levels, subsequently.

Coarsening for Scale-free Graphs

The abovementioned matching-based graph coarsening methods may fail to obtain
good hierarchies for graphs with irregular structure. In an extreme case, applying
matching algorithm on a star-shaped graph can contract only one edge per level
that is not desirable in most cases. Therefore, other functional approach should be
implemented.

The matching algorithms are suggested to modify in such a way that an un-
mathched node can be matched with one of the neighbors. In this way, instead
of matchings, whole groups of nodes are contracted to create the graph hierarchies.
This approach can be applied on graphs with power-law degree distribution.

Another approach implemented to create graph hierarchies for social networks is
based on pairwise merging of nodes with the same neighbors and then merging mul-
tiple nodes. In this manner, multiple neighbors of a high degree node will collapse
with this node.

Flow Based Coarsening

One of the coarsening approaches implemented in a two-level graph partitioning
solver for road networks is based on max-flow computations. In this approach, find-
ing the natural cuts dividing determined regions from the remainder of the graph
is the first step. Then, the uncut components will be contracted reducing the graph
size by up to two orders of magnitude.
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Coarsening with Weighted Aggregation

Generally, in the weighted aggregation approach, all nodes at fine level belong to
nodes at the coarse level with some probabilities. In the aggregation-based coarsen-
ing methods, at first, the nodes of the given fine graph which survive in the coars-
ened graph will be detected. Afterwards, all other nodes are assigned to these coarse
nodes. This approach is established upon Algebraic Multigrid (AMG) methods which
are known as a set of hierarchical linear solvers.

3.6 Summary

The formal definition of graph partitioning problem has been presented in this chap-
ter. Moreover, the available graph partitioning algorithms have been discussed. In
the presented classification of these methods, global algorithms are introduced as
the fundamental methods in graph partitioning which works on the entire graph. It
is also explained that, from a practical point of view, these approaches can only be
employed for smaller graphs or as subroutines in other algorithms.

Another family of methods for graph partitioning discussed in this chapter is im-
proved heuristic methods that they are widely used in various graph partitioning
problems. The key idea of these algorithms is iteratively improvement of an initial
solution.

At the end of this chapter, multilevel graph partitioning method is discussed as the
most successful heuristic approach in graph partitioning.
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Chapter 4

Spectral Graph Partitioning

4.1 Overview

In this chapter, the spectral graph partitioning approaches are discussed in detail.
In general, spectral techniques are important in the design and analysis of the algo-
rithms and have lots of applications in the following areas:

• Graph partitioning (sparsest cut, multi-partitioning, small-set expansion),

• Combinatorial optimization (maximum flow, maximum cut)

• Random walk, pagerank, local graph partitioning

• Coding, expander graphs, expander codes

Fundamentally, spectral graph theory is the study of the properties of a graph by an-
alyzing the characteristic polynomial, eigenvalues, and, eigenvectors of the matrices
associated to the graph, such as adjacency matrix or Laplacian matrix. Correspond-
ingly, a particular class of graph partitioning algorithms is known as spectral parti-
tioning methods which are mainly based on the eigen-decomposition of Laplacian
matrices of either weighted or unweighted graphs [63]. This methods actually re-
duce the graph partitioning problems to finding an eigenvalue of a symmetric matrix
that can be solved by effective well-known algorithms.

In practice, the spectral graph partitioning scheme implements a technique of re-
laxing a binary-values unknown to a real-valued one. In general, in a bisection prob-
lem, each vertex is definitely assigned to one subgraph, either G1 or G2. However,
in the relaxed graph partitioning problem vertices are considered divisible [75], e.g.
0.25 of one vertex might be assigned to G1 and the rest 0.75 to G2. By means of
this relaxation approach, a combinatorical optimization problem is actually turned
into a numerical optimization problem which can be solved by polynomial-time al-
gorithms.
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After solving a relax problem, the real-valued solution should convert to an ap-
proximately optimal solution of the original graph partitioning problem. This aim
can be obtained by rounding the vertex values by comparing the values with some
threshold value and finally assigning each vertex to G1 or G2. One of the possible
threshold values is 0.5, i.e. if a vertex value is less than 0.5, then it is assigned to G1.
Otherwise, it is assigned to G2. It is demonstrated that this threshold can lead to an
unbalanced cut. Another possible threshold which can provide balanced cut is the
median value of vertices [75].

After executing the rounding procedure on the optimal solution of the continuous
problem, a discrete partition is obtained which is expected to be nearly optimized.
Furthermore, in the spectral partitioning, there is a bound, called Cheeger’s inequal-
ity, that can provides a guarantee to find a good cut. More specifically, it bounds the
quality of the optimal cut obtained by the spectral graph partitioning method. In
this chapter, the Cheeger’s inequality and its application has also been discussed in
details.

4.2 Definitions

The graph partitioning problem has been defined in the previous chapter. In this
section some definition used in spectral graph theory will be defined [75].

Considering a partition of G, the cut or edge separator is defined as the set of edges
in E whose endpoints are in different subgraphs. In other words, the partition cuts
these edges. In these problems, an edge weight is an indication of how bad it is to
cut that edge. In this way, the sum of the weights of all the edges in a cut is defined
as the weight of the cut and the graph partitioning problems aims at minimizing this
quantity.

A perfectly balanced bipartition is called bisection and a perfectly balanced mul-
tipartition is recognized as a multisection. To obtain a measure of how a graph is
balanced, a mass can be assigned to each vertex. The mass of a subgraph is defined
as the sum of the masses of its vertices. Thus, a multisection means subgraphs with
equal masses. To obtain this aim, a rounding method that minimizes the difference
between the masses of subgraphs can be implemented, or as an alternative, the ob-
jective functions are optimized in such a way that cut weights is traded against some
mass imbalance.

Two objective functions are defined for judging unbalanced partitions. The first
one is the isoperimetric ratio of a bipartition

Cut(G1, G2)

min{Mass(G1),Mass(G2)}
(4.1)

where Cut(G1, G2) is the weight of the edge separator and Mass(Gi) denotes the
total mass of the vertices in Gi. By this definition, the minimum isoperimetric ratio
among all cuts of G is known as the isoperimetric number of G. If the mass of each
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vertes is assigned 1, then Mass(Gi) = |Vi|. In this case, the isoperimetric number is
also known as the edge expansion. Moreover, if the mass of each vertex is defined as
the sum of the adjoining edge weights, then the isoperimetric number is also called
the conductance or the Cheeger constant of G.

On account of the abovementioned explanations, Equation (4.1) provides a gen-
eral definition. It is worthwhile to note that in some references [80], the Cut(G1, G2)
is also denoted by |δ(S)|, where δ(S) is the set of edges with one endpoint in S ⊆ V
and the other endpoint in V − S. In other words, δ(S) is the edge separator of the
partition (G1 = S,G2 = V −S). By this specific notation, the edge expansion of a set
S ⊆ V can be presented as

|δ(S)|
min{|S|, |V − S|}

(4.2)

Similarly, the conductance of a set S ⊆ V in an unweighted graph can specifically be
rewritten as

|δ(S)|
min{vol(S), vol(V − S)}

(4.3)

where vol(S) is defined as
∑

V ∈S deg(V ).

Accordingly, a subset is considered sparse, if its conductance or expansion is small.
In a regular graph, the notion of conductance and expansion will be equivalent. In
general, the conductance of a graph is more applicable and is denoted as

ϕ(G) = min
S⊆V

ϕ(S) = min
|δ(S)|

min{vol(S), vol(V − S)}
= min

S⊆V,|S|≤n
2

δ(S)

vol(S)
(4.4)

The second objective function is the sparsity of a bipartition which is also known
as the uniform sparsity or cut ratio and defined as

Cut(G1, G2)

Mass(G1)Mass(G2)
(4.5)

By this definition, the cut with minimum sparsity is called the sparsest cut or specifi-
cally the uniform sparsest cut. In this case, if the sum of the adjoining edge weights
is considered as the vertex mass, then the sparsest cut and the sparsity are identified
as the normalized cut and the normalized cut criterion, respectively.

Moreover, the average cut criterion is another parameter which is

Cut(G1, G2)

(
1

Mass(G1)
+

1

Mass(G2)

)
(4.6)

and equal to the sparsity times Mass(G); therefore, optimizing one is actually equiv-
alent to optimizing the other. This parameter is also equal to the sum of the isoperi-
metric ratios of the subgraphs G1 and G2.
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4.3 Scope

In general, spectral graph partitioning algorithms are focused on NP-hard graph par-
titioning problems which can be well partitioned by spectral algorithms. This prob-
lems are including finding the minimum bisection, the cut with minimum isoperi-
metric ratio, and the cut with minimum uniform sparsity. There exist some other
graph partitioning problems that can be solved in polynomial time. For instance, the
minimum cut problem aims at finding a cut of minimum weight and it might iso-
late just a single vertex. This problem can be solved in O(|V ||E| + |V |2 log |V |) time
[75, 83]. There is also the source-target minimum problem in which some vertices
are determined to be in G1 and some others are also determined to be in the other
subgraph, G2. The goal in this problem is to find the minimum cut which satisfies
this requirement. By considering the max-flow min-cut theorem [27, 33], this type
of problem can be solved by polynomial-time algorithms.

An advantage of the spectral partitioning algorithms is that they can handle neg-
ative edge weights. Most of the other graph partitioning approaches are proposed
for graphs with positive edge weights and consequently fail for the graphs with neg-
ative edge weights. For example, the max-flow min-cut theorem does not hold for
the graph with negative edge weights.

4.4 The Laplacian Matrix

Acquaintance with the Laplacian matrix and its properties is the first step in under-
standing the spectral graph theory and partitioning methods.

Consider an undirected graph G = (V,E) and its weighted matrix W , such that
wij ≥ 0 for i, j = 1, ..., n. Then, consider a partition of G with two subgraphs G1 and
G2. Let x be an n-component indicator vector in which xi = c1 if vertex i belongs
to G1, otherwise, xi = c2, where c1 and c2 are two distinct arbitrary constants. The
contribution of an edge (i, j) to the cut weight is calculated by

wij
(xi − xj)

2

(c1 − c2)2
=

{
wij, if (i, j) is cut,
0, if (i, j) is not cut.

(4.7)

Therefore, it can be written [75]

Cut(G1, G2) =
∑

(i,j)∈E

wij
(xi − xj)

2

(c1 − c2)2
=

xTLx

(c1 − c2)2
(4.8)

where L is a symmetric n× n matrix called the Laplacian matrix of G which can be
defined as follows

Lij =

{
−wij, i ̸= j,∑

k ̸=iwik, i = j.
(4.9)
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In fact, L is a matrix presentation of a graph. In a formal definition, the unnormal-
ized graph Laplacian matrix L = [lij]n×n is obtained by

L = D −W (4.10)

where D = [dij]n×n is a diagonal matrix with dij ∈ R that is defined by dii = di =∑n
j=1wij. In other words, di is the degree of node vi.

In an unweighted graph, the weight matrix will be substituted by the adjacency
matrix A:

L = D −A (4.11)

Laplacian matrix is the key feature in the most of the spectral algorithms. Some
of the theorems and properties concerning the Laplacian matrix L are as follows
[40, 63]:

1. L is symmetric positive-semi-definite matrix.

2. For each x ∈ Rn, xTLx = 1
2

∑n
i,j=1wij(xi−xj)2, where xi is the i-th component

of x.

3. The smallest eigenvalue of L is λ1 = 0 with the associated indicator eigenvector
1 = (1, ..., 1)T .

These main properties can simply be proved [40]. Intuitively, if every weight wij is
non-negative, Equation (4.8) demonstrates implies that xTLx ≥ 0 for all x which it
means L is positive semidefinite. Therefore, it has no negative eigenvalues.

Furthermore, if G is a connected graph ans all of its edges have positive weight,
Equation (4.8) is zero if and only if all the components of x is equal to zero if only
if all the components of x are identical. In this case, L has exactly one indicator
eigenvector with eigenvalue zero. The indicator eigenvector actually means the cut
weight is zero if and only if all vertices are in one subgraph and the other one is
empty.

4.5 Graph Partitioning as Constrained Quadratic Op-
timization

The minimum value of cut weight is achieved, xTLx = 0, when G1 = G and G2 =
(∅, ∅); however, it is not desirable. Therefore, some balance constraint should be
imposed.

Let choose the constants c1 = 1 and c2 = −1 to indicate which vertices belongs to
G1 and which ones are in G2. In this manner, the vector x is called a signed indicator
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vector. By imposing the following constraint, exactly half of the vertices are in G1

and half are in G2,
1Tx = 0. (4.12)

This constraint practically dictates that the number of components of x that are 1
must be equal to the number that are -1. By taking this approach, the graph bisection
problem is actually reduced to the optimization problem of choosing x to minimize
xTLx, subjected to Equation (4.12), and for all i, xi = 1 or − 1.

4.6 Bounds on the Weight of a Bisection

The balance constraint (4.12) implies that x should be orthogonal to 1, which hap-
pens to be an eigenvector of L with eigenvalue zero that is the smallest eigenvalue
of L when there exists no negative weight edge. Thus, it can be inferred that there
is a relationship between the smallest balanced cut and the second smallest eigen-
value of the Laplacian matrix. This relationship is actually the essence of the spectral
graph partitioning algorithm.

Consider λ1 ≤ λ2 ≤ ... ≤ λn as the eigenvalues of L and v1,v2, ...,vn as the
corresponding unit eigenvectors. Thus, λ1 = 0 and v1 = (1/

√
n)1. Subsequently, let

V = [v1, ...,vn] ∈ Rn×n, and Λ be the diagonal n× n matrix with the eigenvalues in
the diagonal positions. Therefore, due to Equation (2.2), it can be written

LV = V Λ (4.13)

As it explained before, the eigenvectors of L are all orthogonal to each other; there-
fore, the columns of V form and orthonormal basis for Rn. Accordingly, V is called
an orthonormal matrix, meaning that V TV = I.

4.6.1 Rayleigh Quotient

The main object is actually reduced to finding an x which minimizes xTLx. The
form of the objective function is reminding the Rayleigh quotient which, for a given
matrix A, has been defined as

xTAx

xTx
=

∑
i,j aijxixj∑

i x
2
i

(4.14)

and is the main tool in relating eigenvalues and eigenvectors to optimization prob-
lems.

Based on the definition (4.14), there are also two proven results [80]:

• If A is a real symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ ...λn, and orthonor-
mal eigenvectors v1,v2, ...,vn then

λ1 = max
x

xTAx

xTx
(4.15)
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This claim is extended to other eigenvalues.

• Let Tk be the set of vectors that are orthogonal to v1,v2, ...,vk−1, then

λk = max
x∈Tk

xTAx

xTx
(4.16)

The latter provides a characterization of λk, but it still requires the knowledge of the
previous eigenvectors. In order to obtain a characterization without knowing the
eigenvectors the following theorem has been presented [80].

Courant-Fischer Theorem

λk = max
x⊆Rn

dim(S)=k

min
x∈S

xTAx

xTx
= min

x⊆Rn

dim(S)=n−k+1

max
x∈S

xTAx

xTx
(4.17)

This theorem is more useful in giving bound on eigenvalues and will be employed to
prove the related theorems.

By substituting the Laplacian matrix L in the Equation (4.14), xTLx
xTx

, it can be
demonstrated that the minimizing the cut weight is actually equivalent to minimiz-
ing the Rayleigh quotient, because the components of x is constrained to be 1 or -1
and so the denominator xTx is always n.

By considering the well known Rayleigh-Ritz theorem [80], it can be inferred that
the Rayleigh quotient for every non-zero vector x is in the range [λ1, λn]. Further-
more, by imposing Equation (4.12), the Rayleigh quotient is in the range [λ2, λn]. To
prove this, one can write x as a linear combination of the unit eigenvectors,

x = V a, a ∈ Rn. (4.18)

Then, it can be written

n = xTx = aT V TV︸ ︷︷ ︸
I

a = aTa, (4.19)

and

xTLx = aTV TLV a
(4.13)
= aTV TV Λa = aTΛa =

n∑
i=1

λia
2
i (4.20)

The first term of the summation in Equation (4.20) is zero and can be dropped
because a = V TV a = V Tx ⇒ a1 = v1

Tx = 1Tx = 0. Therefore, the objective
function is essentially bounded by the following inequalities

λ2

n∑
i=2

a2i ≤ xTLx ≤ λn

n∑
i=2

a2i . (4.21)

Finally, due to the fact that
∑n

i=2 a
2
i = aTa = xTx, the bounds of the Rayleigh

quotient are presented by

λ2 ≤
xTLx

xTx
≤ λn. (4.22)
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Therefore, according to Equation (4.8) and the fact that c1 = 1 and c2 = −1, the
bounds of the weight of a bisection can be obtained

λ2n

4
≤ Cut(G1, G2) ≤

λnn

4
. (4.23)

The lower bound is so important because it can inform that there is no small bisection
without solving the NP-hard problem of finding the cut.

It can also be claimed that the vector
√
nv2, with all components supposedly ±1,

gives an optimal bisection. The coefficient
√
2 is appears since v2 is a unit vector

with length of 1, but by the length of an indicator vector is
√
n. By substituting

x =
√
nv2 into Equation (4.8), it is achieved that Cut(G1, G2) = λ2n/4, which is the

lower bound value. So, it is actually an optimal bisection of the graph.

Even though it is difficult and pragmatically impossible to expect that every com-
ponents of

√
nv2 to be 1 or -1, a good cut can be obtained by rounding the vector v2

in the spectral graph partitioning approach. The vector v2 is also called the Fiedler
vector, since it has been suggested to employ for graph partitioning by Miroslav
Fiedler [30, 31].

Fiedler demonstrated that in a special case where all the edge weights are 1 and
the graph is not complete , the vertex connectivity which is the minimum number if
vertices that must be removed to partition the graph into two connected components
is at least λ2. He also showed that regardless the balance condition, the number of
edges in the minimum cut is never less than the vertex connectivity [30].

4.7 Spectral Graph Partitioning

4.7.1 The Relaxed Optimization Problem

In the spectral graph partitioning method, the optimization problem described in
Section 4.5 can be relaxed by ignoring the constraint xi = ±1 and replacing it by a
feasible constraint that ∥ x ∥=

√
n. Therefore, the relaxed optimization problem can

be presented as [75]

minimize xTLx,

subject to xTx = n and 1Tx = 0
(4.24)

It should be noted that the relaxed problem will remain no memory of whether we
want a balanced cut or a biased cut, since c1 and c2 have fixed values and do not
appear in Equation (4.24). It can be a drawback for this approach. Therefore, the
approach of balancing can only be decided in the rounding phase.
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4.7.2 The Spectral Partitioning Algorithm without Vertex Masses

Let G be a connected, weighted graph. The first step in spectral partitioning method
is computing the Laplacian matrix L. Afterwards, an eigenvalue v2 corresponding to
the second-smallest eigenvalue λ2 should be calculated. In general, the eigenvector
v2 does not consist of two-valued components. On the contrary, the components
might be distributed over a range of real values. Hence, these values should be
rounded by implementing a wide range of proposed rounding heuristics. Almost
all of these approaches are threshold cuts in which a threshold value is chosen to
distinguish the vertices belong to G1 from the ones are assigned to G2. Some of the
well-known rounding approaches are investigated in the following.

The simplest rounding approach is the method called sign cut or zero threshold cut
in which a vertex i is assigned toG1, if the i-th component of v2 is positive, otherwise,
it is assigned to G2. Fiedler [30] demonstrated that if all of the components of v2

are non-zero, then both of the G1 and G2 are connected.

The sign cut approach might produce an unbalanced cut. The constrained 4.12
only guarantees that the mean component of x is zero, but it cannot ensure that
there are equal numbers of positive and negative components.

An improved approach to obtain a balance cut is employing the median component
as the threshold of bisecting. This partition is known as the median cut. In this
method, if several vertices exist with the value equal to the median component, they
will be divided equally between the subgraphs.

In practice, there exist some applications in which a near-perfect balanced cut is
crucial. For instance, a balanced cut can play an important role in an efficient distri-
bution of parallel computations between a set processors. On the other hand, there
are other applications which can tolerate imperfect balance. In these applications, it
might be the case in which a much smaller cut is obtained, if a little imperfection in
balance is permitted. Most of the divide-and-conquer algorithms can take advantage
of this kind of flexibility.

The most well-known approach to select a threshold is the sweep cut approach,
also known as criterion cut. In this approach, at first, the components of v2 should
be sorted. Afterwards, the cut weight for every practicable threshold is explicitly
computed and the threshold with the smallest cut will be chosen. By swapping
through the list of sorted components, the cut changes increasingly. The search can
be done in O(|V |+ |E|) times.

In addition to the cut weight, the other criteria can be employed in the sweep
cut method, such as isoperimetric ratio, the sparsity, or the normalized cut criterion
explained in Section 4.2.

Another approach is the related rounding method which leads to partitions called
the jump cut or gap cut. In this approach, after sorting the components of v2, the
largest gap between two successive values will be used as the threshold. Typically,
the largest gap is restricted to be in the middle third of the sorted list for balance. The
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outcome cut is usually less reliable than the sweep cut, but it is easer to implement
and program.

Clustering can also be considered as a form of graph partitioning in which the
number of subgraph and the size of them are not known in advance and it is com-
monly determined by the data. Clustering approaches work well, if a graph can
be partitioned into subgraphs which have an intense internal connectivity in com-
parison to the connectivity between subgraphs. In most of the case, the clustering
procedure is applied on a weighted graph that represents the strength of connectiv-
ity within a set of objects. Thus, in the most common spectral clustering method,
the Fiedler vector is computed, Then, its components will be partitioned with a clus-
tering algorithm, such as Lloyd’s algorithm for k-means clustering [59, 75].

4.7.3 Vertex Masses

In some application, such as partitioning computations between parallel processors,
different processors might represent different computational capacity. This differ-
ence can be reflected by assigning different masses to the vertex of the corresponding
graph. In this context, a positive mass mi is assigned to each vertex i. The mass of a
graph G is denoted by MASS(G) and defined as the sum of the masses of its vertices.
Accordingly, the objective of a partitioning procedure is obtaining two subgraphs G1

and G2 with nearly equal mass.

Let the mass matrix M be a diagonal matrix such that Mii = mi. In this way, the
balance constraint can be re-written as

1TMx = 0 (4.25)

In the relaxed optimization problem (4.24), the balance constraint (4.12) is im-
plicitly imposed by ignoring the smallest eigenvalue of L. By considering the ver-
tices’ masses, the quadratic constraint is proposed as [88] xTMx = Mass(G). Con-
sequently the relaxed problem can be re-written as

minimize xTLx,

subject to xTMx = Mass(G) and 1TMx = 0
(4.26)

This problem can be solved by computing the eigenvector v2 corresponded to the
second-smallest eigenvalue of the symmetric generalized eigensystem [24]

Lv = λMv (4.27)

The generalized Rayleigh quotient is subsequently defined as

xTLx

xTMx
(4.28)
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In a similar way to Section (4.6.1), It can be demonstrated that for every vector
x ̸= 0 satisfying the balance constraint (4.25), the Rayleigh quotient will be in the
range [λ2, λn]. Moreover, the weight of bisection is bounded as

λ2Mass(G)
4

≤ Cut(G1, G2) ≤
λnMass(G)

4
(4.29)

which is implies that the eigenvector x =
√

Mass(G)v2 is a solution of the relaxed
optimization problem (4.26). In this case, if all the components of x is just ±1, it
describes a minimum bisection because the substitution results in Cut(G1, G2) =
xTLx/4 = λ2(Mass)(G)/4, that is the lower bound of (4.29). Similarly, x =√

Mass(G)vn is a maximum of the relaxed optimization problem, and if all of its
components is x, it will be a maximum bisection.

4.7.4 The Spectral Partitioning Algorithm with Vertex Masses

Consider a given connected, weighted graph G with vertices’ masses. The first step
to partition this graph is computing the Laplacian matrix L and the mass matrix M .
Afterwards, the the eigenvector v2 corresponded to the second-smallest eigenvalue
of the generalized eigensystem Lv = λMv. Finally, a rounding procedure is applied
on the eigenvector as described in Section (4.7.2).

4.8 Unbalanced Cuts

The relaxed optimization problem (4.26) is actually a special case of a general dis-
crete optimization problem in which different masses can be assigned to the sub-
graphs. To study the general discrete optimization problem, let the components of
the indicator vector x are restricted to take to values, c1 or c2 which are not nec-
essarily ±1. In this way, according to Equation (4.8), the objective function will be
xTLx = (c1 − c2)

2Cut(G1, G2) in which (c1 − c2)
2. Therefore, the balance constraint

will be c1Mass(G1) + c2Mass(G2) = 0, According to the balance constraint and the
quadratic constraint, it is obtained that [75]

c1 =

√
Mass(G2)

Mass(G1)
, c2 = −

√
Mass(G1)

Mass(G2)
, (4.30)

and the relaxed optimization problem can be rewritten as

minimize xTLx,

subject to ∀i, xi =

√
Mass(G2)

Mass(G1)
or xi = −

√
Mass(G1)

Mass(G2)

and 1TMx = 0.

(4.31)
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Furthermore, the objective function can actually be presented as [75]

xTLx = (c1 − c2)
2Cut(G1, G2)

= Mass(G)2
(

1

Mass(G1)
+

1

Mass(G2)

)
Cut(G1, G2).

(4.32)

Ignoring the constant factor Mass(G), Equation (4.32) demonstrates that the ob-
jective function is essentially the average cut criterion described in Section 4.2. It
is obvious that if the mass of a subgraph approaches zero, the objective function
approaches infinity and penalize the unbalancing partition.

4.8.1 Bounds on the Weight of an Unbalanced Cut

Similar to Section 4.6, by considering Equation (4.31), the bounds on an unbalanced
cut can be represented in the following inequalities [75, 80]

λ2
Mass(G)

≤ Cut(G1, G2)

Mass(G1)Mass(G2)
≤ λn

Mass(G)
(4.33)

which actually bounds the sparsity of both balanced and unbalanced cuts. Both
lower bound and upper bounds are computed during the execution of the spectral
partitioning algorithm. If these two values are close to each other, it means the
rounded solution is close to the optimal solution.

Another important inequality which bounds the cut weight is Cheeger’s inequality
discussed in the next section.

4.9 Cheeger’s Inequality

The Cheeger’s inequality is the most important and algorithmic functional theorem
in the spectral graph theory. Practically, this inequality relates the second small-
est eigenvalue of the Laplacian matrix to how well a graph is connected, and ap-
proximates the sparsest cut of the graph [15]. Before describing this theorem, the
normalized matrices of a graph should be defined.

4.9.1 Normalized Matrices

Let A be the adjacency matrix of an undirected graph and λ1 be its largest eigen-
value. Then, it can be demonstrated that

• λ1 ≤ dmax, where dmax denotes the maximum degree in G.

• λ1 ≥ davg, where davg denotes the average degree of G.
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There is also a well-known theorem, which shows that if G is a connected undi-
rected graph, then

1. The first eigenvalue is of multiplicity one

2. |λi| ≤ λ1 for all i.

3. All entries of the first eigenvector are non-zero and have same sign.

To remove the dependency on the maximum degree of the graph in definition of
the Cheeger’s inequality, the normalized Laplacian matrix is used. Given an adja-
cency matrix A, the normalized adjacency matrix is defined as

A = D− 1
2AD− 1

2 (4.34)

where D is the diagonal matrix whose i-th entry is the degree of vertex i. Moreover
the normalized Laplacian matrix is defined as

L = I −A = D− 1
2 (D −A)D− 1

2 = D− 1
2LD− 1

2 (4.35)

Now, consider α1 ≥ α2 ≥ ... ≥ αn as the eigenvalues of A, and β1 ≤ β2 ≤ ... ≤ βn
as the eigenvalues of L. Then, by employing the above-mentioned facts, it can be
illustrated that

1 = α1 ≥ αn ≥ −1,

0 = β1 ≤ βn ≤ 2
(4.36)

Accordingly, let 0 ≤ λ1 ≤ λ2 ≤ ...λn ≤ 2 be the eigenvalues of the normalized
Laplacian matrix. As mentioned earlier, λ2 = 0 if and only if the graph is discon-
nected. The Cheeger’s inequality states that λ2 is small if and only if the graph is
close to disconnected, i.e. there is a sparse cut in the graph. In other words, a large
λ2 means the graph is well-connected.

4.9.2 The Theorem (Cheeger’s Inequality)

In general, Cheeger’s inequality is defined as

λ2
2

≤ ϕ(G) ≤
√

2λ2 (4.37)

Proving this theorem is important in many other theorems. First, the left hand side
of this inequality, ϕ(G) ≥ λ2

2
which is known as the easy direction, will be proved.

Based on Equation (4.16), it can be written

λ2 = min
x⊥v1

xTLx

xTx
= min

x⊥v1

xTD− 1
2LD− 1

2x

xTx
(4.38)
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By setting y = D− 1
2x and substituting x = D

1
2y, it is obtained

λ2 = min
D

1
2 y⊥v1

yTLy(
D

1
2y

)T (
D

1
2y

) = min
D

1
2 y⊥v1

yTLy

yTDy
(4.39)

Note that v1 = D
1
21, therefore L

(
D

1
21

)
=

(
D− 1

2LD− 1
2

)(
D

1
21

)
= D− 1

2L1 = 0.

Thus, D
1
21 ⊥ v1 is equivalent to

〈
D− 1

2 ,v1

〉
=

〈
D− 1

2 ,D
1
21

〉
=

∑n
i=1 diyi = 0, and

therefore,

λ2 = min
y=

∑
diyi=0

yTLy

yTDy
= min

y=
∑

diyi=0

∑
e=ij (yi − yj)

2∑n
i=1 diy

2
i

(4.40)

To specify and upper bound on λ2, it should only be found a vector y giving a set S
of small conductance. Preferably, it is chosen yi = 1, if i ∈ S, and yi = 0 if i /∈ S.
Therefore,

∑
e=ij (yi − yj)

2∑n
i=1 diy

2
i

=
|δ(S)|
vol(S)

(4.41)

But the problem is that
∑n

i=1 diyi ̸= 0. To solve this problem, y can be modified to

yi =

{
1

vol(S)
, if i ∈ S

−1
vol(V−S)

, if i /∈ S
(4.42)

By substituting this definition in Equation (4.40), the upper bound will be

λ2 ≤ |δ(S)| 2m

vol(S)vol(V − S)
(4.43)

and, finally, due to vol(V − S) ≥ m,

λ2 ≤ 2ϕ(G) (4.44)

Equation (4.44) demonstrates that λ2 is small, if there is a sparse cut in the graph.

The right hand side of Equation (4.37) is known as difficult direction and declares
if λ2 is small, then there is a sparse cut in the graph. The small λ2 means that there

exists y such that
∑n

i=1 diyi = 0 and λ2 =
∑

e=ij(yi−yj)
2∑n

i=1 diy
2
i

. In this case, a rounding algo-
rithm is needed to round the fractional values of second eigenvectors into integral
values. The following theorem is the basis of the proof.

Theorem: Given any y with R(y) =
∑

e=ij(yi−yj)
2∑n

i=1 diy
2
i

, there exists a subset S ⊆
supp(y) with |δ(S)|

vol(S) ≤
√

2R(y) , where supp(y) is defined as {i|yi ̸= 0}.

Algorithmically, at most, n values are needed to try for t = y2i for 1 ≤ i ≤ n. It is
demonstrated that the above theorem always works, if vol(supp(y)) ≤ m. Therefore,
if y is considered the second eigenvector of the Laplacian matrix, then the rest of
procedure can be summarized as following:
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1. Finding c such that vol({i|yi < c}) ≤ m and vol({i|yi > c}) ≤ m. Using the
vector z = y − c1. It has been known that R(z) ≤ R(y).

2. Constructing z+ and z− by employing following equation.

z+i =

{
zi, if z(i) ≥ 0

0, otherwise

z−i =

{
zi, if z(i) ≤ 0

0, otherwise

(4.45)

It is also known that min {R(z+), R(z−)} ≤ R(z), and vol(supp(z+)) ≤ m and
vol(supp(z−)) ≤ m.

3. Applying a rounding algorithm on z+ or z−. Then a set S can be found such
that ϕ(S) ≤

√
2min {R(z+), R(z−)} and vol(S) ≤ m, as required.

4.9.3 Notes on the Cheeger’s Inequality

The Cheeger’s inequality provides an approximation to the conductance of a graph.
It gives a good approximation, when ϕ(G) is large. Otherwise, it may not give a
proper approximation.

The sparsest cut problem is one of the most important problems in approximation
algorithms. This is an O(log n) approximation algorithm by implementing linear
programming and can be an O(

√
log n) by using semidefinite programming. It is

basically assumed that there is no constant factor approximation for this problem
[80, 55].

This inequality is so important for following reasons:

• First, it provides an approximation independent of the graph size.

• Second, it gives a useful relation between conductance/expansion and the
spectral gap, which is closely related to the convergence rate of the random
walk. This relation is greatly functional in bounding the mixing time of random
walk which is an important parameters in probability and algorithm design.

• Third, it gives a useful tool in constructing expander graphs, very well-connected
sparse graphs, which are extremely useful in many areas in computing science.

It is also worthwhile to note that for a planar graph (Section 2.2) G with n ver-
tices of maximum degree d, and λ2 as the second eigenvalue of the corresponding
Laplacian matrix, it can be demonstrated that [80]

λ2 ≤
8d

n
(4.46)
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4.10 Maximum Cut Problem

4.10.1 Last Eigenvalue

After discussing about the first and the second eigenvalue of the Laplacian matrix,
the other end of the spectrum will be discussed in this section. In short, the last
eigenvalue and eigenvector can be employed to achieve a non-trivial approxima-
tion algorithm for the maximum cut problem. Furthermore, the ratio of the first
eigenvalue to the last one can be used to give a bound on the size of maximum
independent set.

4.10.2 Maximum Cut

The maximum cut problem is one of the graph cut problems. The analysis of this
problem is similar to the proof of the Cheeger’s inequality, both are due to the Tre-
visan [87]. Given an undirected graph G = (V,E), the maximum cut problem is to
find S ⊆ V such that |δ(S)| is maximized.

When G = (X, Y,E) is bipartite, then all the edges can be cut as |δ(X)| = |δ(Y )| =
|E|. Let A be the normalized adjacency matrix (Equation (4.34)) of G and α1 ≥
α2 ≥ ... ≥ αn as its eigenvalues. It can be shown that α1 = −αn if and only if G is
bipartite. It is also can be shown that α1 is close to αn if and only if G is close to
bipartite. Travisan [87] demonstrated that α1 is close to αn if and only if G has a
subgraph close to bipartite.

For the maximum cut, the objective function is |δ(S)|
|E| . Therefore, the objective value

is in [0, 1]. It is defined

β(G) = min
y∈{−1,0,+1}V

∑
e |yi + yj|∑

i di|yi|
(4.47)

Alternatively, It can be written

β(G) = min
S⊆V

(L,R) partitions of S

2edges within(L) + 2edges.within(R) + |δ(S)|
vol(S)

(4.48)

It should be noticed that β(G) is small if and only if G has a subgraph S close to
bipartite. As it explained in Section 4.9.1, the eigenvalues of A are in [−1,+1], and
the largest eigenvalue is +1. In this section, the matrix I +A has been introduced,
thus, the eigenvalue of this matrix will obviously be in the range of [0, 2]. Accordingly,
if λ1 ≥ λ2 ≥, ..., λn is the eigenvalues of I + A, the condition α1 ≈ −αn can be
recognized as λn ≈ 0.
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4.10.3 Theorem (Trevisan)

λn
2

≤ β(G) ≤
√

2λn (4.49)

This statement and its proof is very similar to that of Cheeger’s inequality and has
been explained in [87]. Due to the easy direction, λn

2
≤ β(G), if G has a subgraph

close to bipartite, then λn is small. Moreover, if G has a maximum cut of ratio greater
than 1− ϵ, then β(G) ≤ ϵ and λn ≤ 2ϵ.

4.10.4 Approximation Algorithm

In this section, a non-trivial approximation algorithm for max cut problem has been
discussed. It is easy to find a cut with at least |E|/2 edges, either greedy or randomly.
After obtaining y ∈ {−1, 0,+1}V with

∑
e=ij |yi+yj |∑

i di|yi|
≤

√
2λn, a subset S ⊆ V and a

partition (L,R) of S can be attained such that

2|δ(L,L)|+ 2|δ(R,R)|+ |δ(S)|
vol(S)

≤
√

2λn (4.50)

where δ(X, Y ) is the set of edges with one endpoint in X and one endpoint in Y
(X and Y could overlap). At first, L and R are fixed on two sides by getting all the
edges in δ(L,R). Then the max cut problem will recursively solved on G− S, and a
placement of L and R will be chosen such that at least half of the edges in δ(S) is
gotten. Afterwards, according to Equation (4.50), it can be written:

2|δ(L,L)|+ 2|δ(R,R)|+ |δ(S)|
2|δ(L,L)|+ 2|δ(R,R)|+ |δ(L,R)|+ |δ(S)|

≤
√

2λn (4.51)

Therefore,
|δ(L,R)|

|δ(L,L)|+ |δ(R,R)|+ |δ(L,R)|+ 1
2
|δ(S)|

≥ 1−
√
2λn (4.52)

it can finally be obtained

|δ(L,R)|+ 1
2
|δ(S)|

|δ(L,L)|+ |δ(R,R)|+ |δ(L,R)|+ |δ(S)|
≥ 1−

√
2λn (4.53)

Therefore, if λn ≥ θ (the value of θ will be determined), then 1 −
√
2λn is too small

and the output is a cut which has at least half of the edges. To determine the θ, when
λn ≥ θ, it implies that β(G) ≥ θ

2
and in particular

OPT (G) ≤ 1− θ

2
(4.54)

Therefore, cutting half the edges is a
0.5

1− θ
2

=
1

2− θ
approximation algorithm.
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4.11 More Eigenvalues

So far, the first, the second and the last eigenvalues of the Laplacian matrix has been
discussed. In this section the other eigenvalues will be studied. Again, consider
0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn as the eigenvalues of the Laplacian matrix of G. It has been
known that λk = 0 if and only if G has at least k connected components [55, 36].
The generalization of this statement are as follows:

1. λk is close to zero indicates that there is a sparse cut of size n
k
. This statement

is recognized as the small-set expansion problem.

2. λk is close to zero if and only if there are k disjoint sparse cuts in G. This
statement is also called multi-partitioning problem.

4.11.1 Small-set Expansion

Fundamentally, the small-set expansion problem is to distinguish between the fol-
lowing two cases:

1. All small sets of size δn have high conductance (ϕ(G) ≥ 1− ϵ);

2. Some small set of size δn has low conductance (ϕ(G) ≤ ϵ).

It is worth to notice that this problem has a close connection to the unique games
conjecture [69] which if true would imply optimal approximation results for many
problems including the maximum cut problem discussed in section 4.10.2.

Accordingly, as an important open question, the approximability of this problem is
noticed in various studies [68]. Generally, there is a conjecture that for any ϵ there
exists δ such that it is NP-hard to distinguish between the two abovementioned cases.
This conjecture, if true, would entail the unique games conjecture [69].

AS mentioned in Section 4.9, Cheeger’s inequality states that λ2 is close to λ1 if
and only if there is a sparse cut, but it does not provide any other information about
the size of the sparse cut. For instance, there is a small gap between λ1 and λ2 in the
hypercube, but all small sets have high conductance [55].

By using this theorem, it has been shown that if λl is close to λ1, then there is a
sparse cut of the size close to n

l
. This result will be led to a subexponential time

algorithm for approximation the small-set expansion problem [8].

Assumptions

• The graph is d-regular
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• The matrix
1

2
I +

1

2
A is considered, where A is the normalized adjacency ma-

trix with the eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn.

• For S ⊆ V , the measure of S is defined as µ(S) =
|S|
n

, where |V | = n.

Theorem (Arora, Barak, Steurer) [8]: Suppose ϕ(S) ≥ ϵ for every S with µ(S) ≤
δ. Then, for every even k ≥ 2,

n∑
i=1

λki ≤ max

{
n.

(
1− ϵ2

16

)k

,
4

δ

}
(4.55)

Applications: This theorem shows that if the rank of the top eigenspace is large,
then there is a small set with small conductance. Otherwise, if there is a small
sparse cut S, its projection to the top eigenspace is large. Therefore, there is a vector
in the top eigenspace which is similar to the characteristic vector of S. Now, the
top eigenspace is of small rank, and so an approximate exhaustive search can be
applied on the top eigenspace. Then, a set with small symmetric difference to S can
be recovered. Finally, a set with the most δn vertices and small conductance can be
obtained [8].

4.11.2 Multi-Partitioning

The second result of a small λk is discussed in this section. If λk of the Laplacian
matrix is close to zero, then there are k disjoint subsets S1, S2, ..., Sk such that ϕ(Si)
is small for every i [55].

There exists a geometric heuristic for graph partitioning: embed each node i to a
k-dimensional point (v1(i),v2(i), ...,vk(i)) where v1,v2, ...,vk are the first k eigen-
vectors, then some geometric clustering algorithm is employed to partition the ver-
tices. This spectral embedding provides a nice presentation of graphs (see Section
4.12).

If λk is close to zero, then there are k orthonormal eigenvectors with small Rayleigh
quotient. In view of these orthonormal eigenvectors, it is expected that each of them
defines a unique sparse cut. Therefore, k disjoint sparse cuts can be found.

Theorem (Lee, Oveis Gharan, Trevisan) [55]: There is a polynomial time algo-
rithms to find k disjoint subsets S1, S2, ..., Sk ⊆ V such that ϕ(Si) ≤ O(k3)

√
λk.

In a quick comparison to the previous theorem, this theorem provides a more func-
tional results since it gives many sparse cuts (which one of them is small) and it is
also works for small k. On the other hand, the previous theorem presents a stronger
bound on the conductance which can be important for small-set expansion.

Proof Outline
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• The most important fact is that v1,v2, ...,vk are orthonormal which is noticed
in the isotropy property∑

v∈V

< x, F (v) >2= 1 for any unit vector x ∈ Rk (4.56)

where F (i) = (v1(i), v2(i), ..., vk(i)) is the spectral embedding of the vertex i.
Furthermore, it is demonstrated that

∑
v∈V ∥ F (v) ∥2= k, where ∥ F (v) ∥2 is

defined as ℓ2 mass. Accordingly, the isotropy property implies that the ℓ2 mass
cannot concentrate on less than k directions; therefore, there exist k disjoint
clusters.

• The distance of two vertices is defined as

dF (u, v) =

∣∣∣∣∣∣∣∣ F (u)

∥ F (u) ∥
− F (v)

∥ F (v) ∥

∣∣∣∣∣∣∣∣ (4.57)

The isotropy property entails that close vertices cannot contain too much mass.
Thus, it is reasonable to put the close points to the same cluster until the clus-
ter has enough mass. In a visual manner, points are grouped based on their
directions

Figure 4.1: Partitioning according to the radial distance [55]

Assume there are k clusters, S1, ..., Sk, each formed by close points, and each
has enough mass, supposedly

∑
v∈Si

∥ F (v) ∥2≥ 1

k

∑
v∈V

∥ F (v) ∥2 (4.58)

It is also defined

ψi(v) =

{
F (v), if v ∈ Si

0, otherwise
(4.59)
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Then ψ1, ψ2, ..., ψk would have disjoint supports. Consider the Rayleigh quo-
tient∑
(u,v)∈E

∥ ψi(u)− ψi(v) ∥2∑
v∈V

∥ ψi(v) ∥2
=

∑
(u,v)∈E,u∈S,v∈S

∥ F (u)− F (v) ∥2 +
∑

(u,v)∈E,u∈S,v /∈S
∥ F (u) ∥2∑

v∈S
∥ F (u) ∥2

(4.60)
Besides, ∑

(u,v)∈E
∥ F (u)− F (v) ∥2∑

v∈V
∥ F (v) ∥2

≤ λk (4.61)

Then, according to the fact∑
v∈S

∥ F (v) ∥2≥ 1

k

∑
v∈V

∥ F (v) ∥2, (4.62)

it can be inferred that the denominator is still large. Therefore, it is only
needed to demonstrate that the numerator is small. The first term of the nu-
merator is bounded by

∑
(u,v)∈E ∥ F (u) − F (v) ∥2, but the second term is not

bounded. The main idea is that if clusters are far apart from each other, then it
is possible to define a smooth cut-off so that the edge-by-edge ratio is bounded
and the property that the supports are disjoint is still maintained.

• Employing a technique in metric embedding, called low-diameter decompo-
sition, one can partition the points into different groups, in such a manner
that each group is of low diameter, and most of the points are not close to
the boundary. In this case, the points are randomly partitioned based on their
directions and dropped them close to the boundaries, and taking groups un-
til there is enough mass to be called a cluster. Then, the procedure will be
repeated until achieving k clusters that are far apart from each other. In this
way, k functions will be obtained that have disjoint supports, each with small
Rayleigh quotient. Afterwards, applying the randomized rounding procedure
provides k disjoint sparse cuts.

The proof employs four prominent lemmas, which are briefly described in the
following:

1. Isotropy and Energy Spreading

F is considered (∆, η)-spreading, if for all subsets S of V ,

diam(S, dF ) ≤ ∆ ⇒
∑
v∈S

∥ F (v) ∥2≤ η
∑
v∈V

∥ F (v) ∥2 (4.63)

Lemma 1 Let v1,v2, ...,vk be orthonormal vectors and F (u) = (v1(u),v2(u), ...,vk(u)),

then F is
(
∆,

1

k(1−∆)2

)
-spreading.
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2. Smooth Localization

For every pair u, v ∈ V , using the definition of dF (u, v) as the distance for an
edge (u, v), the shortest path distance from u to v is defined by d̂F (u, v). By this
definition, the ϵ-neighborhood of S is

Nϵ(S) =
{
x ∈ V : d̂F (x, S) < ϵ

}
(4.64)

The following lemma demonstrates how to perform the smooth cut-off in such
a way that the edge-by-edge contribution is bounded if it is allowed to go ϵ-far
from S.

Lemma 2 For any subset S ⊆ V , it can be defined a mapping ψ : V → Rk with
the following properties:

(a) ψ(v) = F (v) for all v ∈ S.

(b) supp(ψ) ⊆ Nϵ(S).

(c) ∥ ψ(x)− ψ(y) ∥≤
(
1 +

2

ϵ

)
∥ F (x)− F (y) ∥ for x, y ∈ E.

3. Disjoint Separated Regions

Now, if disjoint subsets can be found such that each has enough mass, and each
pairs is far apart, then the following lemma will complete the puzzle.

lemma 3 Let S1, S2, ..., Sk be disjoint subsets of V , such that d̂F (Si, Sj) ≥ β and

∑
v∈Si

∥ F (v) ∥2≥ δ
∑
v∈V

∥ F (v) ∥2, (4.65)

then, there are ψ1, ψ2, ..., ψk : V → R such that∑
(u,v)∈E

∥ ψi(u)− ψi(v) ∥2∑
v∈V

∥ ψi(v) ∥2
≤ 1

δ

(
1 +

4

β

)2

∑
(u,v)∈E

∥ F (u)− F (v) ∥2∑
u∈V

∥ F (u) ∥2
≤ 1

δ

(
1 +

4

β

)2

λk

(4.66)

4. Random Partitioning

A random partition is called (∆, α, δ)-padded, if diam(S) ≤ ∆ for each S ∈ P ,
and for each point x, the probability that the distance from x to the boundary
is at least ∆/α. Accordingly, the following theorem from metric embedding is
applied.

Theorem: For every ∆ > 0 and δ > 0, there is a (∆, O(k/δ), 1 − δ)-padded
random partition.

Employing this theorem, the points close to the boundaries can be eliminated,
with only a small loss in mass. Then, each group in the partition is far apart
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from the other groups. Therefore, k clusters with enough mass can be obtained
by taking disjoint unions of groups.

Lemma 4 Let F : V → Rk be
(
∆,

1

k
+

1

8k2

)
-spreading. Let P be a

(
∆, α, 1− 1

4k

)
-

padded random partition. Then, there exist k disjoint subsets S1, S2, ..., Sk ⊆
such that

d̂F (Si, Sj) ≥ 2
∆

α
for i ̸= j (4.67)

and ∑
v∈Si

∥ F (v) ∥2≥ 1

2k

∑
v∈V

∥ F (v) ∥2 (4.68)

Summarizing the Procedure

The proof of the theorem can be obtained by putting the lemmas together:

• Let v1, ...,vk be the first k eigenvectors. Define F (x) = (v1(x), ...,vk(x)).

• Set ∆ ≈ 1√
k

, such that (
1− ∆2

2

)−1

≤ 1 +
1

8k
(4.69)

• By Lemma 1, F is
(
∆,

1

k
+

1

8k2

)
-spreading. Set α ≈ k2 (δ = 1

k
). Apply the

theorem on low-diameter decomposition to achieve the random partition P
required by Lemma 4, with

d̂F (Si, Sj) ≥
∆

k2
(4.70)

• Apply Lemma 3 with δ =
1

2k
and β =

∆

k2
≈ 1

k2.5
to obtain k disjointly supported

functions ψ1, ψ2, ..., ψk : V → R, such that∑
(u,v)∈E

∥ ψi(u)− ψi(v) ∥2∑
v∈V

∥ ψi(v) ∥2
≤ 1

δ

(
1 +

4

β

)2

λk = O(k6).λk (4.71)

• Employing the randomized rounding procedure, k disjoint subsets are ob-
tained, each with conductance O(k3).

√
λk
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4.12 k-way Partitioning

The spectral graph partitioning methods for bipartitioning problems has thoroughly
discussed. In this section, the spectral methods for partitioning a graph into k sub-
graphs will be presented.

The most common approach to partition a graph into more than two subgraphs is
recursive partitioning that the main approach is generally explained in Section 3.4.2.
But, this method is not the most reliable option because the final solution is highly
dependent on the first cut.

There exist different other methods for k-way partitioning, such as vector par-
titioning, spectral clustering by spectral vector directions, and by spectral vector
rotation.

The vector partitioning method is the most flexible approach and it will be studied
in this section. In essence, this approach employs an arbitrary number of eigenvec-
tors to cut a graph into an arbitrary number of subgraphs.

4.12.1 Vector Partitioning

The main idea of vector partitioning method is using multiple eigenvectors, and not
just the Fiedler vector. In this approach, each vertex will be assigned to a spectral
coordinates in a k-dimensional space by utilizing k eigenvectors of the Laplacian
matrix. As a simple instance, Figure 4.2 illustrates a sample 4-regular graph that
its vertices are positioned in a 2-dimensional space by using two eigenvectors of the
Laplacian matrix as their spectral coordinates. After assigning spectral coordinates,
the points can be partitioned by a geometric partitioning algorithm. This method is
also functional to obtain a better bipartitioning solution.

Employing eigenvectors has been proposed to reduce the graph partitioning prob-
lem to vector partitioning, which is a discrete optimization problem, as well. It is
also NP-hard, but heuristic approaches efficiently work on this problem.

For a bipartitioning problem let the indicator vector x be a binary vector in which
xi = 1 means vertex i belongs to subgraph G1. Consider V = [v1, ...,vn] as a n × n
matrix including the eigenvectors as its columns and Λ as a diagonal n × n matrix
including the a corresponding eigenvalues. In this way, the eigensystem can be
described as the follows,

LV = MV Λ

V TMV = I
(4.72)

By writing the indicator vector as a linear combination of eigenvectors, x = V a, and
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Figure 4.2: A sample regular graph (left) illustrated by the spectral coordinates of its
vertices in a 2-dimensional space (right)

recalling Equation (4.8), the objective function can be re-written as

xTLx =
∣∣∣Λ1/2a

∣∣∣2
=

∣∣∣∣∣∑
j∈G1

sj

∣∣∣∣∣
2

,
(4.73)

where sj is defined as

sj = mj

[√
λ1vj1,

√
λ2vj2, ...,

√
λnvjn

]T
, (4.74)

and is known as the n-coordinate spectral vector of vertex j. Therefore, the problem
is actually choosing a subset of G minimizing Equation (4.73) that is actually the
length of the sum of its spectral vectors. As mentioned, this problem is NP-hard, as
well. However, the problem can be re-written in a maximization form and can be
solved by some well-known heuristic algorithms. Let µ be the desired mass of G1,

µ = Mass(G1) = xTMx = aTa (4.75)

Then, for an arbitrary constant ξ, the equivalent maximization problem will be

ξµ− Cut(G1, G2) = ξxTMx− xTLx

=

∣∣∣∣∣∑
j∈G1

ŝj

∣∣∣∣∣
2

,
(4.76)

53



CHAPTER 4. SPECTRAL GRAPH PARTITIONING

where the spectral vector ŝj is

ŝj = mj

[√
ξ − λ1vj1,

√
ξ − λ2vj2, ...,

√
ξ − λnvjn

]T
, (4.77)

and the value of ξ is recommended to be λ2 + λn [6].

In practice, computing all the eigenvectors is expensive or even infeasible. Hence,
it is suggested to compute only the first k eigenvectors for some small k. Therefore,
each vertex has a k-dimensional spectral vector.

By truncating V to a n × k matrix, a binary indicator vector may not be found
as a linear combination of these k eigenvectors, so Equations (4.73) and (4.76)
do not hold, consequently. A possible way is projecting the indicator vector into
the subspace spanned by the computed eigenvectors. Algebraically, the vector a =
V TMx specifies the projection of x onto subspace spanned by columns of V . Hence,
by considering the projection, x̄ = V a, the objective function (4.76) can be recast
as ∣∣∣∣∣∑

j∈G1

ŝj

∣∣∣∣∣
2

= x̄T (ξM −L)x̄ (4.78)

An algorithm approximately maximizes Equation (4.73), if x̄ approximates x well.
In one of the fundamental greedy algorithms proposed by Alpert et al. [6], the
procedure begins by placing the longest vector in G1. Then, the vector maximizing
the summation is repeatedly added until the desired mass µ is achieved. In this
approach if just one eigenvector associated to the second smallest eigenvalue is used,
it is actually the standard spectral bipartitioning described in Section 4.7.

The vector partitioning scheme can be implemented for other objective functions,
such as minimum cut, sparsity and the isoperimetric ratio.

4.12.2 k-Subgraph Partitions

For spectral partitioning a graph into more than two subgraphs multiple indicator
vectors is required. Therefore, an indicator matrix X ∈ Rn×k has been defined in
which

Xji =

{
cyes, if vertex j ∈ Gi

0, otherwise
(4.79)

The columns of X = [X∗1,X∗2, ...,X∗n] are indicator vectors for k subgraphs. Ac-
cordingly, for a k-way partitioning, Equation (4.8) can be re-written as

Cut(Gi, G−Gi) =
X∗i

TLX∗i

c2yes
(4.80)

Hence, the total weight of a k-way cut is

Cut(G1, G2, ..., Gk) =
k∑

i=1

X∗i
TLX∗i

2c2yes
=

trace(XTLX)

2c2yes
(4.81)
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This k-way partitioning problem can be expressed as a k-way vector partitioning
problem [6]. By choosing cyes = 1 and following Equations (4.73) and (4.76), mini-
mizing the cut weight (4.81) is equivalent to maximizing

ξMass(G)−
k∑

i=1

X∗i
TLX∗i =

k∑
i=1

∣∣∣∣∣∑
j∈G1

ŝj

∣∣∣∣∣
2

(4.82)

This objective function is actually the sum of the length of k vectors, each associated
to one subgraph. Therefore, the partitioning method essentially aims at making
these vectors as long as possible. The same greedy algorithm described in Section
4.12.1 is also applicable for this case.

4.13 Summary

In summary, this chapter has reviewed all the key features of spectral graph theory.
The spectral partitioning methods have been explained for both bipartitioning and
k-way partitioning problems. Moreover, the overall spectrum of a graph has been
scrutinized and the related problems have been discussed in this chapter.
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Chapter 5

Spectral Graph Clustering

5.1 Overview

Clustering is an unsepervised technique dealing with grouping related objects of a
set. It is expected that objects of each cluster are more similar to each other rather
than the objects of other clusters. Graph clustering algorithms are an especial family
of clustering method that aim at finding groups of related vertices in a graph. In this
section spectral clustering algorithms are briefly discussed.

5.2 Graph Cut and Problems

The majority of the graph clustering methods are on the basis of the graph partition-
ing approaches. Spectral clustering algorithms are mostly based on the solution of
the graph partitioning problems in which at least one eigenvector of the Laplacian
matrix of the graph that its partitions are the solutions of some graph cut problems
[63]. One of the most popular graph partitioning problems is the k-way partition-
ing problem in which k connected sub-graphs will be produced by eliminating edges
from the initial graph (Section 4.12). The produced sub-graphs are actually a rep-
resentation of well separated clusters. Therefore, the key problem is actually the
elimination of some edges. To investigate the available criteria of edge elimination,
at first, consider W (Cr, Ct) =

∑
vi∈Cr,vj∈Ct

wij, C̄i is every cluster like Cj so as j ̸= i.
Furthermore, Πk is the set of possible k-way partitions of G.

5.2.1 Minimum Cut Problem

The first problem to be investigated is the k-way minimum cut problem:

min cut(πk), πk ∈ Π (5.1)
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where:

cut(πk) =
1

2

k∑
i=1

W (Ci, C̄i) (5.2)

This problem aims at minimizing the sum of the weights of the edges whose nodes
come from different clusters. One of the limitation observed in this approach is
that the solutions of this problem are often partitions with isolated nodes in clusters
which can be a drawback in some applications such as VLSI domain. Therefore, in
the further formulations, additional aspects have been taken into account to resolve
such limitations. One of these aspects is considering some lower and upper bounds
to delimit the size of the clusters of a partition πk. Such consideration adds some
further constrains to the k-way min-cut formulation:

li ≤ |Ci| ≤ ui, 1 ≤ i ≤ k (5.3)

where li and ui are, respectively, the lower and upper bounds for the size of cluster i
and |Ci| is the number if nodes in cluster Ci.

5.2.2 Minimum Ratio Cut Problem

An approach to avoid finding partitions with isolated nodes in clusters is dividing
Equation (5.3) by the number of elements in each cluster [63]. This approach was
introduced to solve bipartitioning problems and also known as two-way ratio cut
problem [56, 92].

The method is also extended for the k-way ratio cut problems [14]:

min
πk∈Πk

ratiocut
(
πk

)
, (5.4)

where

ratiocut
(
πk

)
=

1

2

k∑
i=1

W (Ci, C̄i)

|Ci|
(5.5)

5.2.3 Minimum Normalized Cut Problem

This approach is proposed as an alternative to the k-way minimum cut problem. In
this method the summation of W (Ci, C̄i) is divided by the sum of the degrees of the
vertices inside the cluster Ci, vol(Ci) =

∑
j∈Ci

dj. This problem is also called k-way
ncut problem [76]:

min
πk∈Πk

mincut
(
πk

)
, (5.6)

where

ncut
(
πk

)
=

1

2

k∑
i=1

W (Ci, C̄i)

vol(Ci)
(5.7)
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This problem was originally derived from the relation between the normalized
association and dissociation measures of a partition [76]. The association measure
indicates the average connectivity of nodes in each cluster of a partition. The dis-
sociation measure reflects the cut cost of a partition in terms of percentage of the
cut edge connections regarding all the graph nodes. It has been concluded that the
problem of finding a partition maximizing the dissociation inter-clusters is identical
to the problem of finding a partition maximizing the association inside each cluster
[76, 77].

5.2.4 Min-max Cut Problem

Another well-defined cut problem is creating min-max cut problem for clustering
[22, 21]. The main purpose of the min-max is indeed minimizing the inter-cluster
similarities,

min
πk∈Πk

MinMaxCut
(
πk

)
, (5.8)

where

MinMaxCut
(
πk

)
=

1

2

k∑
i=1

W (Ci, C̄i)

W (Ci, Ci)
(5.9)

5.2.5 Modularity Maximization Problem

Modularity is a measure of quality validation in graph clustering [64]. The modu-
larity denoted by q, in a partition π, measures the difference between the sum of the
edge weights connecting vertices within the cluster and the expected sum of edge
weights connecting vertices inside each cluster of the same partition in a random
graph:

q(π) =
1

2m

n∑
i=1

n∑
j=1

(
wij −

didj
2m

)
yij, (5.10)

where

m =

∑n
i di
2

, (5.11)

and

yij =

{
1, if vi and vj belongs to the same cluster
0, otherwise

(5.12)

The Equation is multiplied by 1/2 because the sum of intra-cluster edge weights is
counted twice. Moreover, the multiplication by 1/m is in view of normalizing to
ensure its value is less than or equal to 1. The portion didj

2m
is also denoted by pij

demonstrating the probability of having the edge (vi, vj) in a random graph with
the same node degree sequence as the original graph G. The closer value of q(π)
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to 1 means the better connectivity of the partition. To conclude, the modularity
maximization problem can be presented as the following formula:

max
π∈Π

q(π), (5.13)

where Π is the set of all possible k-way partitions of G, with k = 1, ..., n.

5.3 Spectral Clustering Algorithms

According to the previous section, spectral clustering algorithms are actually based
on and closely related to the spectral partitioning methods. Accordingly, these algo-
rithms are categorized into two main group: recursive two-way spectral clustering
algorithms and direct k-way spectral clustering algorithms. The former is almost
identical to the approach explained in Section 4.7.2 and the later is actually the
algorithm described in Section 4.12.

5.3.1 Two-way Partitioning Algorithms

As it explained in the previous chapter, the two-way partitioning approach is actu-
ally an answer to the min cut problem. The main scheme of theses algorithms is
demonstrated in the following algorithm

Algorithm 4: The main scheme of two-way spectral clustering algorithm
[40]

Data: G(V,E), Laplacian matrix L, Threshold value r
Result: graph clusters

1 Procedure Two-way Clustering
2 employing numerical algorithms to calculate the second eigenvalue λ2 of

L and its associated eigenvector v2;
3 for all i ∈ V do
4 if v2(i) > r then
5 put i in the first partition (i ∈ C1);
6 else
7 put i in the second partition (i ∈ C2);
8 end
9 end

10 return the resulting partitions;
11 end

Various algorithms are distinguished by the threshold value. For instance, in gen-
eral spectral bipartitioning, it is suggested that r = 0. But, it is also suggested to be
the median of v2 or the largest gap between two consecutive elements in the sorted
v2
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5.3.2 k-way Partitioning Algorithms

The basis of these clustering algorithms is vector partitioning method described in
Section 4.12.1. To clarify this clustering approach, consider a fundamental case
of the k-way min cut problem, which is essentially an especial case of the Equa-
tion (4.82), if the mass of all vertices is 1. In this case, the k-way min cut problem
can be reformulated as a max-sum vector partitioning problem

max
πk

ξn− cut(πk), (5.14)

where ξ ≥ λn and li ≤ |Ci| ≤ ui for 1 ≤ i ≤ k

Afterwards, due to Equation (4.77), a matrix of scaled eigenvectors is created such
that

Vd = [v̂ij]n×d (5.15)

where
v̂ij = vij

√
ξ − λj (5.16)

Moreover, U = [uij]n×d is defined as the matrix including the first d eigenvectors of
the Laplacian matrix L. Defining a set P =

{
yn
1 , ...,y

n
n

}
, where yn

i is the i-th row of
Vn, the procedure proposed by Alpert et al. [6] demonstrated in Algorithm 5. This
algorithm is called multiple eigenvector linear orderings (MELO).

Algorithm 5: The MELO algorithm [6, 63]
Data: G(V,E), the number of desired clusters k, the number of eigenvectors

to be use d
Result: graph clusters

1 Procedure MELO
2 construct the matrix of scaled eigenvectors Vd by employing the Equation

5.16, (set P = ∅);
3 create Y =

[
yd
i

]
n×d

, for 1 ≤ i ≤ n, where yd
i is the i-th row of Vd;

4 for j = 1 to n do
5 find yd

i , 1 ≤ i ≤ n, such that it maximizes ∥
∑
y∈P

y + yd
i ∥;

6 add yd
i to P and remove it from Y ;

7 label i as the j-th vertex in the ordering;
8 end
9 find the final k-way partition by linear ordering and applying the

approach proposed by Alpert ans Kahng [5];
10 return the resulting partitions;
11 end

In the step 9, the k-way final partition will be generated by employing a dynamic
programming procedure [5]. It is also worthwhile to note that the complexity of this
algorithm is O(dn2).
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Chan et al. [14] proposed a spectral relaxation of the k-way ratio cut problem
(Equation (5.4)). The proposed spectral heuristic method is based on the orthonor-
mality among the eigenvectors of the Laplacian matrix. In this approach, an indica-
tor matrix is defined such that X = [xij]n×k, where

xij =

{
1√
|Cj |

, if i ∈ Cj

0, otherwise
(5.17)

Furthermore, a rotation partitioned matrix R = [rij]n×n is defined such that

rij =

{
1√
|Cl|
, if i, j ∈ Cl

0, otherwise
(5.18)

Accordingly, it can be demonstrated that xj
TLxj = ratiocut(Cj, C̄j) =

(
X tLX

)
jj

.
It can also be deduced that

ratiocut (C1, C2, ..., Ck) =
k∑

j=1

xj
TLxj = trace

((
X tLX

)
jj

)
(5.19)

Consequently, It can be obtained that

min
πk∈Πk

1

2

k∑
i=1

W (Ci, C̄i)

|Ci|
= trace

(
UTLU

)
=

k∑
i=1

λi (5.20)

In other words,
k∑

i=1

λi is a lower bound for the k-way ratio cut problem.

As the solution of a relaxed form of the k-way ratio cut problem, U is an approx-
imation for X and Z = UUT is an approximation for the matrix R. Considering
UT = [u′

1, ...,u
′
n], it can be obtained zij = u′T

i u
′
j.

The main idea of the heuristic proposed for this clustering problem is to measure
how close node are to each other by evaluating the cosine between their associated
rows in the matrix U . Hence, the elements of the directional cosine matrix of the
rows of this matrix, denoted by P̂ is defined as

p̂ij =
u′

iu
′
j

∥ u′
i ∥∥ u′

j ∥
(5.21)

The procedure is depicted by Algorithm 6.
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Algorithm 6: The KP algorithm [14]
Data: G(V,E), the number of desired clusters k
Result: graph clusters

1 Procedure KP
2 calculate the first k eigenvectors of L and sort them in the columns of the

matrix U ;
3 select k nodes to represent each of the k prototype clusters by using their

magnitude ∥ u′i ∥ and the relation of orthogonality between them;

4 /* calibrating the k prototypes */

5 for iter = 1 to 4 do
6 calculate the average of the prototypes from the previous iteration;
7 choose the seed for each prototype by the posterior selection of the

closest node;
8 end

9 for i = 1 to n do
10 calculate the cosine between u′

i and each of the prototypes;
11 if one of the calculated cosines > cos(π/8) then
12 assign node i to the prototype with the largest cosine;
13 end
14 end
15 define S as the set if outsiders (non-allocated nodes);
16 for all s ∈ S do
17 find the largest weight cut between s and all existing clusters;
18 mark the cluster with the largest cut value (key) as the target;
19 end
20 while S ̸= ∅ do
21 insert the outsider with the largest key to its target;
22 recalculate all targets and keys of the remaining neighbor outsiders;
23 end
24 return the resulting partitions;
25 end

Sometimes, it might be the case that there exist more edges between outsiders
than the clusters. An improvement to this algorithm also proposed by Chan et al
[14] suggests that after allocation of an outsider, the solution of merging all the
remaining outsiders to the cluster with the best ratio cut is calculated and if it is
better than merging only one element, then all of them will be assigned to the cluster
with the best ratio cut [63].

Another approach grouping the rows of the matrix U is the Unnormalized k-means
algorithm which is also known as Ukmeans. This procedure is summarized in Algo-
rithm 7.
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Algorithm 7: The Ukmeans algorithm [90, 63]
Data: G(V,E), the number of desired clusters k
Result: graph partitions

1 Procedure Ukmeans
2 calculate the first k eigenvectors of L and sort them in the columns of the

matrix U ;
3 /* The i-th row of U is corresponded to the node vi */

4 apply the k-means algorithm to U and obtain a k-way partition
π′k = {C ′

1, ..., C
′
n};

5 /* Form the final partitions */

6 for i = 1 to n do
7 if the i-th row of the matrix U belongs to C ′

l in the π′k then
8 assign vi to the cluster Cl;
9 end

10 end
11 return the resulting partitions;
12 end

5.4 Summary

Briefly, this chapter has discussed the prominent graph clustering algorithms and
highlights the connections between this class of clustering methods and spectral
partitioning approaches by providing a summary of graph cuts and the algorithm
proposed to solve these problems.
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Chapter 6

Practical Application: Group Testing

6.1 Overview

In this chapter, a novel application of graph partitioning in graph-constrained group
testing has been investigated. Typically, a group testing problem is dealing with ob-
taining a method to split up the task of identifying elements of a set which have some
specific properties into tests on subsets, which are also known as groups, rather than
on each element, individually. By taking this approach, the number of required tests
is significantly reduced. The main idea of the proposed approach in this chapter
is that by employing spectral graph partitioning and by holding some specific con-
dition in this method to partition a given graph into expander subgraphs can take
advantage of group testing schemes in a data set represented by a graph.

6.2 Graph-Constrained Group Testing

To understand the application, at first, a summary of the problem has been pre-
sented. In general, in a non-adaptive group testing, n items of a given set are
arbitrary grouped into different pools. Each pool is then tested to identify defec-
tive items. The purpose of this problem is minimizing the number of pools, and
accordingly tests, needed to identify at most d defective items. Motivated by ap-
plications in network tomography, sensor networks and infection propagation, the
graph-constrained group testing has been introduced [16] in which the given set
is necessarily represented by a graph. In this applications, unlike the conventional
group testing, the graph imposed some constraints on the group formation.In this
case, a test is usually associated with a random walk.

6.2.1 Network Tomography

One of the most important applications illustrating the graph-constrained group test-
ing problem is network tomography in which identification of congested links in a
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given network is a key problem [25]. Practically, in an end-to-end path, most of the
packet losses only happen in a few links along the path. The graph-constraint group
testing approach can be employed to find the location of such congested links [16].

In this context, the network can be modelled as a graph G = (V,E) where each
vertex associated to a router/host on the network and the edges demonstrate the
communication links. For instance, Figure (6.1) illustrates a network in which the
route 1 → 4 → 6 → 7 → 8 → 9 is valid. In practice, to test a network, there exists

Figure 6.1: Graph representation of a network [16]

a monitoring system consisting of some nodes known as vantage points which can
send and receive packets. The packets are sent through the network by assigning the
routes and the end hosts. To identify the congested links, all measurement results
on whether a packet has reached its destination will be reported to and analysed in
a central server. In this case, the graph-constrained group testing is actually aiming
at minimizing the number of required measurements. In this application, the graph
constrains the group forming in such a way that a vantage point can only assign the
routes which are in a path in the graph G [16].

6.2.2 Problem Statement

Let G = (V,E) be a graph with at most d defective vertices . The goal is locating
the set of defective items by conducting as least as possible measurements. Each
measurement determines whether the set of item examined along a path on the
graph includes a defective item or not. The problem of finding defective vertices is
known as vertex group testing and the problem of finding defective edges is called
edge group testing.

It should be noted that not all sets of vertices can be grouped together, but only
those that share a path on the graph G can be regarded as a pool.

By considering T (n) as the mixing time of the graph G, it is demonstrated that
[16]:
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• The conventional group testing problem is actually a special case of graph-
constrained group testing problem in which the set of items can be represented
by a complete graph Kn.

• In a general graph, by conducting m = O(d2T 2(n) log(n/d)) non-adaptive tests,
the defective items can be identified.

• In the case of the Erdős-Rényi random graph denoted by G(n, p) and also the
expander graphs, the number of non-adaptive tests required to locate the de-
fective items is

m = O(d2 log3(n)) (6.1)

Therefore, according to Equation (6.1), in a set with a huge number of items, the
defective items can be identified by much less tests, if the representative graph is an
expander.

Accordingly, it can be inferred that if a given graph is not expander but it can be
partitioned into expander subgraphs, then Equation (6.1) will still be valid in each
subgraph and the number of required tests will significantly be less than the case of
a general graph.

6.3 Expander Graphs

Expander graph is a very useful object with many applications in the computer sci-
ence.

There are different possible ways to define expander graphs:

• Spectrally: Expander graphs are graphs with a large spectral gap, i.e. λ1 − λ2
is large.

• Combinatorially: Expander graphs are graphs with very good connectivity, i.e.
|δ(S)|/|S| is large for all S ⊆ V (edge expansion), or |N(S)|/|S| is large for all
S ⊆ V (vertex expansion).

• Probabilistically: From this point of view, expander graphs are graphs for which
random walk mixes very rapidly.

As described before, Cheeger’s inequality shows that a graph has a large spectral
gap if and only if the edge expansion is large. It is also explained that the random
walk mixes rapidly if and only if there is a large spectral gap.

According to these definitions, complete graphs are the best expander graphs.
However, in the most of applications, the sparse expander graphs are interested in
which there are only linear number of edge, e.g. d-regular graphs for constant d.
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6.4 Partitioning into Expanders

As mentioned earlier, in Section 4.11, given an undirected graph G = (V,E), the
k-th smallest eigenvalue of the (normalized) Laplacian matrix of G is zero if and
only if the graph has at least k connected components. In other words, λk > 0 if and
only if G has at most k − 1 connected components.

Accordingly, it can easily be inferred that if λk = 0 and λk+1 > 0 then G has exactly
k connected components. Although, these equivalent statements give some useful
information about the existence of k connected components, no information about
the quality of subsets can be achieved. Such information can essentially be useful
in graph-constrained group testing. The aim of this section is discussing the robust
versions of the abovementioned fact and trying to implement this information in
application of group testing scheme.

To the best of knowledge, most of the works on the sparsest cut problem are only
dealing with the partitioning graph into sets of small outside conductance of the
subsets in the partition [9, 58, 56, 55]. there exist only two conducted researches
studying the inside conductance of the subsets.

6.4.1 Definitions

To study the quality of the subsets and consequently the quality of a k-way partition-
ing, several combinatorial measures have been proposed, such as k-center, k-median,
and conductance. The latter defined in Section 4.2 is one of the best objective func-
tions for measuring the quality of a cluster. But after finding a k-way partitioning,
although a set S might have a small conductance, it can be loosely-connected or
even disconnected inside. Kennan et al. [46] proposed a bicriteria measure which
has also been used by Oveis-Gharan and Trevisan [36] to evaluate the quality of a
k-clustering based on the both inside and outside conductance of sets.

Basically, for P ⊆ V , the inside conductance of P denoted by ϕ(G[P ]) is defined
as the conductance of the induced subgraph of G on the vertices of P . Suggested
by Kennan et al., a k-partitioning into P1, ..., Pk is good if for all 1 ≤ i ≤ k, δ(Pi) is
small but ϕ(G[Pi]) is large [46]. Accordingly, Oveis-Gharan and Trevisan proposed
(ϕin, ϕout)-clustering as a new measure of clustering quality [36]. By their definition,
k disjoint subsets A1, ..., Ak of V are a (ϕin, ϕout)-clustering, if for all 1 ≤ i ≤ k,

ϕ(G[Ai]) ≥ ϕin and
ϕG(Ai) ≤ ϕout

(6.2)

In this way, the graphs that contain a k-partitioning such that ϕin ≫ ϕout will be of
interest.
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6.4.2 Theorems

The first theoretical result which guarantees a (ϕin, ϕout) partitioning is based on the
theorem proposed by Tanaka [85, 86]. Consider ρ(k) as the maximum conductance
of any k disjoint subsets of G, which for any k ≥ 2 is defined as

ρ(k) = min
disjointA1,..,Ak

max
1≤i≤k

ϕ(Ai) (6.3)

Therefore, ρ(2) = ϕ(G). Accordingly, a higher order variant of Cheeger’s inequality
has been proposed by Lee et al. [55] such that for any graph G and k ≥ 2,

λk
2

≤ ρ(k) ≤ O(k2)
√
λk (6.4)

By this definitions, according to Tanaka’s theorem, if ρG(k + 1) > 3k+1ρG(k) for
some k, then G has a k-partitioning that is a (ρ(k + 1)/3k+1, 3kρ(k))-clustering. In
other words, if there is a large gap between ρ(k) and ρ(k + 1) then there exists a k-
partitioning that is a (exp(k)ρ(k), ρ(k+1)/ exp(k))-clustering. The large exponential
gap required between ρ(k) and ρ(k + 1) is actually a drawback of this theorem.

Another existential theorem proposed by Oveis-Gharan and Trevisan [36] is the
following. For any k ≥ 2 if λk > 0, then for some 1 ≤ l ≤ k − 1 there ex-
ists a l-partitioning of V into subsets P1, ..., Pl that is a (Ω(ρ(k)/k2), O(lρ(l))) =
(Ω(λk/k

2), O(l3)
√
λl)-clustering. This theorem shows that between the order k con-

ductance and the order k + 1 conductance can really be arbitrarily small. But this
result is not algorithmic. With some loss of parameters, an algorithmic theorem can
be obtained [36]:
Algorithmic Theorem: There is a simple local search algorithm which for any k ≥ 1
if λk > 0 finds a l-partitioning of V into sets P1, ..., Pl that is a (Ω(λ2k/k

4), O(k6)
√
λk−1)

where 1 ≤ l ≤ k. For an unweighted graph G the algorithm runs in polynomial time
in the size of G. This theorem leads to a functional corollary that there exists a
universal constant c > 0 such that for any graph G if λk+1 ≥ c.k2

√
λk, then a k-

partitioning of G can be obtained that is a (Ω(λk+1/k), O(k
3
√
λk))-clustering.

Therefore, having a polynomial O(k2) gap between λk and λk+1 guarantees the
existence of a partitioning of V into k sets of small conductance, each inducing an
expander subgraph of large conductance.

6.5 Extension to the Group Testing Scheme

According to the corollary resulted by the algorithmic theorem mentioned in the
previous section, a graph-constrained group testing problem whose graph is not an
expander but there exists a polynomial O(k2) gap between its k-th and (k + 1)-th
eigenvalues can take advantage of the efficient group testing algorithms on expander
graphs.
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In this case, the problem of graph-constrained group testing is reduced to finding
a partitioning of G into k expanders. Based on the proposed algorithmic theorem,
Oveis-Gharan and Trevisan [36] presents a polynomial time algorithm for partition-
ing graph G into k expander subgraphs (Algorithm 8).

Algorithm 8: A polynomial time algorithm for partitioning G into k ex-
panders [36]

Data: k > 1 such that λk > 0
Result: A (ϕ2

in/4, ϕout) l-partitioning of G for some 1 ≤ l ≤ k

1 Procedure k-expander
2 initialize l = 1, P1 = B1 = V ;
3 while ∃ 1 ≤ i ≤ l such that w(Pi −Bi → Bi) < w(Pi −Bi → Pj) < for

j ̸= i, or Spectral Partitioning finds S ⊆ Pi such that
ϕG[Pi](S), ϕG[Pi](Pi − S) < ϕin do

4 let SB = S ∩Bi;
5 let S̄B = S̄ ∩Bi;
6 let SP = S ∩ (Pi −Bi);
7 let S̄P = S̄ ∩ (Pi −Bi);

8 if max{ϕ(SB), ϕ(S̄B)} ≤ (1 + 1/k)l+1ρ∗ then
9 let Bi = SB, Pl+1 = Bl+1 = S̄B and Pi = Pi − S̄B;

10 l ++;
11 goto step 3;
12 end
13 if max{ϕ(SB, Bi), ϕ(S̄B, Bi)} ≤ 1/3k then
14 update Bi to either of SB or S̄B with the smallest conductance;
15 goto step 3;
16 end
17 if ϕ(SP ) ≤ (1 + 1/k)l+1ρ∗ then
18 let Pl+1 = Bl+1 = SP and Pi = Pi − SP ;
19 l ++;
20 goto step 3;
21 end
22 if w(Pi −Bi → Pi) < w(Pi −Bi → Bj) < for j ̸= i then
23 update Pj = Pj ∪ (Pi −Bi), and let Pi = Bi;
24 goto step 3;
25 end
26 if w(SP → Pi) < w(SP → Pj) < for j ̸= i then
27 update Pi = Pi − SP , and merge SP with argmaxPj

w(SP → Pj) ;
28 end
29 end
30 return the resulting partitions P1, ..., Pl ;
31 end
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In this proposed algorithm, ρ∗ is defined as

ρ∗ = min

{
λk
10
, 30k5

√
λk − 1

}
(6.5)

Moreover, it has been defined that ϕin = λk/140k
2 and ϕout = 90k6

√
λk−1. Besides,

it should be noted that for S ⊆ P ⊆ V ϕG[P ](S) denotes the conductance of S in the
induced subgraph G[P ]. For S, T ⊆ V ,

w(S → T ) =
∑

u∈S,v∈T−S

w(u, v). (6.6)

In this definition, S and T are not necessarily disjoint. Finally, for S ⊆ Bi ⊆ V it has
been defined

ϕ(S,Bi) =
w(S → Bi)

vol(Bi−S)
vol(Bi)

.w(S → V −Bi)
(6.7)

After employing the algorithm on a graph with the mentioned polynomial gap,
k expander subgraph will be obtained and an efficient group testing algorithm can
find the defective items. In this case, the number of non-adaptive tests required to
identify the defective items in Equation (6.1) will be increased by a factor of k.

6.6 Summary

In this chapter, a novel strategy has been suggested to use the spectral graph parti-
tioning concepts to extend the applicability of graph-constrained group testing meth-
ods.

The strategy is simply dealing with partitioning the graph representing a set of
items into expander subgraphs and then employing an efficient group testing al-
gorithm on each subgraphs, independently. This approach can be computationally
cheaper than applying the algorithm on the main general graph, especially when the
number of items is much more than the number of defective items.
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Chapter 7

Programming and Visualization

7.1 Overview

In addition to conducting a systematic research in the graph partitioning topics, em-
ploying programming tools to implement the discussed algorithms can be a good
way to improve the understanding in this area. It can also be useful to evaluate
novel algorithms. Therefore, in this chapter, the implementation of graph partition-
ing algorithms has been discussed. Accordingly, at first, some of the available open
source packages are briefly introduced. Then, even though it was not a require-
ment in this project, the design and development of a functional MATLAB toolbox
implementing spectral partitioning algorithms is presented in this chapter.

7.2 Available Packages

There are a lot of computational packages implementing graph partitioning algo-
rithms. Table 7.1 has described some of the well-known graph partitioning packages
or the packages using graph partitioning methods.
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Table 7.1: List of packages implementing graph partitioning methods

No. Pakage name
Programming

language
Description and Features

1 CDTB MATLAB

The Community Detection Toolbox contains
several functions, such as graph generator,
clustering algorithms and evaluation
functions

2 grPartition MATLAB

A MATLAB function to partition large graphs
efficiently by implementing a graph
partitioning algorithm based on spectral
factorization [42]

3 Chaco C

A graph partitioning software package
allowing the recursive application of several
methods to find small edge separators in
weighted graphs. The most noticeable
implemented algorithm families are as
follows: Inertial, spectral, Kernighan-Lin, and
multilevel methods [41] There is also a mex
file interface in MATLAB to communicate with
Chaco and using its routines.

4 KMETIS C
A graph partitioning package using the METIS
library [3]

5
Octave Network

Toolbox
MATLAB

A toolbox generally used for network and
graph analysis. The original package has been
developed by Strategic Engineering Research
Group (SERG), MIT [91].

According to the above table, MATLAB (matrix laboratory) has been employed in
most of these packages. As a matrix-based programming language, with the strong
built-in graphics and visualization tools, and the ability of the integration with the
other programming language, MATLAB has been introduced and optimized as one
of the most functional tools for simulation and solving engineering and scientific
problems [2]. Therefore, in this project it has been employed for studying spectral
graph partitioning methods.

7.3 MATLAB Implementation

There exist lots of functions and tools in MATLAB which can be employed in graph
theory applications. Generally, graphs are used in MATLAB to model pairwise rela-
tions between objects using vertices and edges.
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To start working with graphs and implementing the algorithms in MATLAB, graph
objects are employed as the fundamental component. Basically, graph objects rep-
resent undirected graphs in which the nodes are connected by direction-less edges.
There are also some built-in methods which can be used to modify the object or work
with it.

The algorithms are implemented as MATLAB functions which can be called in
Command Window or in other MATLAB functions. These functions are actually the
building blocks of the final toolbox. To facilitate employing the toolbox, a Graphical
User Interface (GUI) is created. In this project, MATLAB GUI development environ-
ment which is also known as GUIDE has been employed to create this front-end.
Figure 7.1 demonstrates the main interface.

Figure 7.1: The Graphical User Interface of the toolbox

The graphical user interface consists of three main parts:

Graph Data: This panel is used to import a graph object by loading a MATLAB
data file (*.mat) or generating a random graph. It is also possible to generate a
random graph to work with. To generate a random graph three different options are
available which will be explained.

Visualization: This panel provides the user with a graphical presentation of the
inputted graph. Moreover, the adjacency matrix of the graph will be represented by
its sparsity pattern in which the non-zero elements of this matrix will be displayed
by small blue points. This can also give user a better sense of the graph connectivity.

Analysis and Partitioning: In this panel, at first, the user can execute the Analysis
module to calculate some important parameters, such as the Laplacian matrix and
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its eigenvalues and eigenvectors. By calculating the spectrum, some of the important
and functional theorems explained in the previous chapters can be investigated for
an inputted graph. By pressing the RUN button the partitioning method chosen by
the user will be applied on the graph and the resulted subgraphs will be displayed.
The user can also store the results as a MATLAB data file or a spreadsheet file. This
can be helpful for further investigations or researches.

7.3.1 Generating Random Graphs

As mentioned earlier, there exist three different options to generate random graphs
in the toolbox. The first one is generating a general random graph in which after
generating the nodes, each pair of them will randomly be attached. The probability
of attachment and the probability distribution is can be selected by the user.

The general random graph model is based on the Erdős-Rényi model in which
a complete graph on n vertices is produced and the edges independently will then
be removed with probability 1 − p. The resulting graph is known as Erdős-Rényi
random graph and denoted by G(n, p). Figure 7.2 illustrated a general random
graph generated in the GUI.
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Figure 7.2: A general random graph created with n = 50 and p = 0.5

The second option is generating a regular random graph. In this part, a regular
random graph will be produced by employing the algorithm proposed by Steger and
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Wormald [82, 1] which produces an asymptotically uniform random regular graph
in a polynomial time. It is also demonstrated that the algorithm works in practical
quadratic time for relatively large d [50].

In many researches and in this project as well, regular graphs are of interest.
Thanks to their special algebraic properties, this type of graphs can be important
for evaluating some basic conjectures in general theorems. For instance, in this
project, regular graphs have been considered as one of the fundamental forms of
expander graphs. An example of a random 4-regular graph generated in the GUI is
demonstrated in Figure 7.3.
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Figure 7.3: A random regular graph created with n = 30 and d = 4

The last option is generating a modular random graph by which the user can create
a graph with a particular number of communities. In some applications, it needs to
have a random graph in which some communities are intentionally created. This
type of random graph can be useful in studying community detection algorithms or
graph partitioning methods. Hence, a random modular graph generator has been
implemented in this part.

In this research, this type of random graphs has been used to study the spectral
graph partitioning algorithms and also evaluate the toolbox. A simple method to
create such graphs follows these steps:
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• Creating a list of vertices by using randperm function. The resulted array con-
tains a random permutation of integers in the range of 1 to |V |.

• To form the communities, the array is broken into c sub-arrays, where c is
number of required communities.

• Then the edges are randomly added due to a predefined probability values
for existence of an edge between nodes within a community denoted pin and
the nodes in different communities denoted by pout. In the GUI, the former
has been called the probability of attachment and the latter will be calculated
by using a ratio describing the relation between the average degree within a
community to the average degree outside degree.
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Figure 7.4: A random modular graph created with 60 nodes, 4 communities and the
probability p = 0.8

7.3.2 MATLAB Toolbox

After creating a set of functions and tools in MATLAB, all files can be packaged to
create a toolbox to share with others. These files might include MATLAB code, data,
apps, examples, and documentation. By creating a toolbox, a single installation file
is generated (.mltbx) that enables the user to install the toolbox within the MATLAB.
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When the end user install the toolbox, the .mltbx file manages the details such as
setting the MATLAB path and other installation details.

One of the fundamental ways for sharing a MATLAB toolbox is uploading the
installation file to MATLAB Central File Exchange. In this way, the users will be able
to download the toolbox within the MATLAB. It should be noticed that there are
some limitation on file type for submission to MATLAB File Exchange. In this case,
the package cannot include MEX-files or other binary executable files, such as DLL
or ActiveX controls [2].

7.4 Evaluation

In this section an example of spectral partitioning is solved by employing the devel-
oped toolbox.

7.4.1 Example1: Bisection Problem

At first, a sample random graph with two communities is created in the GUI. Fig-
ure (7.5) illustrates the generated random graph.
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Figure 7.5: The initial random graph with 37 nodes and two communities

Moreover, the sparsity pattern of its adjacency matrix showed in the following
figure.
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Figure 7.6: The visualization of the sparsity pattern of the adjacency matrix

By running the Analysis module, the graph spectrum and Fiedler vector is calcu-
lated and demonstrated in the GUI (Figure 7.7)

Figure 7.7: The GUI after running the Analysis module

It is also possible to plot the values of Fiedler vector to observe the gap between
the values of different clusters (Figure 7.8).

Finally, the resulted subgraphs can be obtained after running Partitioning module
(Figure 7.9).
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Figure 7.8: The gap in the Fiedler vector reveals the existence of two clusters
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Figure 7.9: The resulted subgraphs after running Partitioning module
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Chapter 8

Conclusions and Future Work

8.1 Summary of Achievements

In this research, a comprehensive study of available graph partitioning methods has
been featured. Graph partitioning methods are recognized as one of the most impor-
tant and functional algorithms in combinatorics and has a wide range of application
in computer science. This research has provided a structured survey of graph parti-
tioning approaches by discussing the main concepts and algorithms proposed in this
area.

Initially, the research points out the prominent applications of the graph partition-
ing problems to demonstrate the widespread demand on these methods. Parallel
processing, complex networks, image processing, clustering, and community detec-
tion are some of the most important cases in which graph partitioning algorithms
are a crucial requirement.

Studying the main available graph partitioning methods reveals that although the
global algorithms can work on entire the graph, the algorithms are typically expen-
sive and only restricted to small graphs. On the other hand, the local algorithms are
more flexible but a reliable solution can be achieved only by iterations. Moreover,
the multilevel graph partitioning approach is introduced as one of the most accurate
heuristic method.

This research has had an emphasis on spectral partitioning methods. Accordingly,
all the basis of the spectral methods has been discussed in this research. Moreover,
the entire of graph spectrum and the related problems has been investigated in this
research.

Furthermore, the connection between spectral partitioning and spectral clustering
methods is briefly discussed by describing the spectral clustering algorithms. This
research illustrates that spectral clustering algorithms actually take advantages of
spectral partitioning concepts.

As an extension to this research project, a novel strategy has been suggested to
use some state-of-the-art spectral graph partitioning concepts to extend the applica-
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bility of group testing algorithms in graph-constrained problems. The key idea in
this strategy is partitioning a graph into expander subgraphs and then applying an
efficient graph testing algorithms on each subset.

As an another extension to this project, a MATLAB toolbox has been developed
alongside the research to improve the understanding of spectral partitioning con-
cepts. By using this toolbox, a user can easily generate a variety of random graphs
or import a graph data file and then run the analysis or partitioning modules to see
how spectral methods work. Moreover, the graphical user interface provides some
visualization tools to improve the user experience and comprehension.

In conclusion, this research can be used as an initial point for conducting re-
searches on graph partitioning algorithms and can be regarded as a comprehensive
study on spectral graph partitioning methods.

8.2 Future Work

Although the main objectives of this research has been achieved, there is still some
potential topics for future research as it is highlighted in the following:

• The main emphasis of this project is on spectral graph partitioning methods;
however, all other partitioning methods described in Chapter 3 can be a topic of
research. In particular, multilevel graph partitioning method is one of the most
interesting algorithms which is widely used on account of its efficiency and
accuracy. Almost all of the applications requiring graph partitioning methods
can take advantage of multilevel approaches.Therefore, conduction a compre-
hensive research on this method can be of interest.

• In this research, spectral clustering methods are briefly described to highlight
the relation between spectral clustering and spectral partitioning schemes. An
interesting topic for future research, spectral clustering methods can be inde-
pendently studied.

• The proposed strategy in Chapter 6 is still a raw idea. It can actually be evalu-
ated in a practical research by conducting some numerical testing.

• Finally, the MATLAB toolbox presented alongside this research can be extended
for future work in the following ways:

– Adding more random models for generating random graphs, such as Glee-
son’s algorithm which is proposed to generate random social network
graphs.

– Adding other partitioning methods. Currently, only bipartitioning and a
simple k-partitioning algorithms have been implemented.

– The GUI and the Analysis module can be improved adding more features
to investigate other spectral parameters.
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– The proposed approach for group-constrained group testing can also be
implemented in this toolbox to evaluate its performance, in practice.
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A. NOTATIONS AND SYMBOLS

A Notations and Symbols

x, y, z,X, Y, Z Scalars (lower-case or upper-case letters)
x,y, z Vectors (lower-case bold letters)
X,Y ,Z Matrices (upper-case bold letters)
xi Entry at position i of vector x
Xij Entry at position (i, j) of matrix x
xT ,XT Transpose of vector x and matrix X
R The set of real numbers
Rn The set of all vector of length n
Rm×n The set of all real matrix of size m× n
| · | Number of members of a set
∥ · ∥ Norm
⟨·, ·⟩ Inner product
{· · · } A set of elements
G A general graph G = (V,E)
Gi The i-th subgraph of G
Ci The i-th cluster
V Set of graph nodes
Vi The i-th subset of V
n The number of graph vertices |V | (The order of the graph)
V Set of graph elements
m The number of graph elements |E| (The size of the graph)
∆ The maximum degree of the graph
Kn A complete graph of order n
A The adjacency matrix of a graph
A The normalized adjacency matrix of a graph
L The Laplacian matrix of a graph
L The normalized Laplacian matrix of a graph
W The weight matrix of a graph
D The degree matrix of a graph
I Identity matrix
λi The i-th eigenvalue
Λ A diagonal matrix of eigenvalues
vi The i-th eigenvectors
V A matrix of all eigenvectors
δ(·) The edge separator of a cut
vol(·) The summation of node degrees within a subset
ϕ(·) Conductance of a graph
ρ(k) Order-k conductance of a graph
Πk Set of all possible k-way partitions
πk a k-way partition
O(·) Asymptotic big O notation
Ω(·) Asymptotic big Ω notation
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A. NOTATIONS AND SYMBOLS

ϵ An arbitrary small positive value
min{x1, ..., xN} The smallest among scalers
minx f(x) The minimum value of real function f with respect to x
max{x1, ..., xN} The smallest among scalers
maxx f(x) The minimum value of real function f with respect to x

argmaxxf(x)
Argument of the maxima (the points at which the function
values are maximized)
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B. USER GUIDE

B User Guide

The developed graph partitioning toolbox can easily be installed into MATLAB as
an add-on. All the required files to execute the toolbox including the graphical
user interface and the functions have been packaged into single installation file (GP-
tool.mltbx).

The user can install the toolbox by navigating to the folder including the .mltbx
file from within MATLAB and double click on the installation file. This will pull up
an installation dialog. By clicking on Install button, the toolbox will be added as an
add-on to the MATLAB. The end users do not need to be concerned with the MATLAB
path or other installation details. The .mltbx installation file manages these details
for end users. The user can also review and manage the toolbox by choosing Manage
Add-Ons in Add-Ons menu.

To execute the toolbox, it is enough to run the main GPtool function simply by
typing the following in MATLAB command window:

>>GPtool
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